Electrical and Structural Properties of Wide Bandgap II-VI Semiconducting Compounds

  • A. W. Brinkman
Part of the NATO ASI Series book series (NSSB, volume 200)


The II–VI semiconductors are composed of equimolar proportions of a group lib element (Zn,Cd,Hg) and a group IVa element (S,Se,Te). They crystallise in either the cubic zincblende (sphalerite) or the hexagonal wurtzite structures, in which the metal ion is surrounded tetrahedrally by four chalcogen ions. Many of the important properties derive from the tetrahedral bonding and the valency. Band structure calculations, have established that the zinc and cadmium compounds are all direct semiconductors. Thus the need to conserve crystal momentum does not inhibit band-to-band radiative recombination and the II–VI semiconducting compounds are efficient emitters and detectors of light. It was as phosphors for CRT displays that these materials first found application.


Misfit Dislocation Partial Dislocation Perfect Dislocation ZnSe Layer Extra Half Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Hartmann, R. Mach & B. Selle in Current Topics in Materials Science Vol. 9, Ed. E. Kaldis, North Holland Amsterdam (1982).Google Scholar
  2. 2.
    W. Stutius and F. A. Ponce, J. Appl. Phys. 58 (1985) 1548.ADSCrossRefGoogle Scholar
  3. 3.
    P. D. Brown, A. P. C. Jones, G. J. Russell, J. Woods, B. Cockayne and P. J. Wright, Inst. Phys. Conf. Ser. 87, (1987) 3.Google Scholar
  4. 4.
    P. D. Brown, G. J. Russell and J. Woods, J. Appl. Phys. in press.Google Scholar
  5. 5.
    A. Lefebvre, Y. Androussi and G. Vandershaeve, Phys. Stat. Sol (a) 99 (1987) 405.ADSCrossRefGoogle Scholar
  6. 6.
    E. O. Hall, “Twinning and Diffusionless Transformations in Metals”, Butterworth (1954), 116.Google Scholar
  7. 7.
    J. W. Matthews in “Epitaxial Growth, part B”, Ed. J. W. Matthews, Academic, New York (1975) p.560.Google Scholar
  8. 8.
    P. M. Dryburgh, B. Cockayne and K. G. Barraclough (Eds.) “Advanced Crystal Growth, Part IV”, Prentice Hall, New York (1987) p.289.Google Scholar
  9. 9.
    T. Randa, I. Suemmune, K. Yamada, Y. Kau and M. Yaminishi, 4th Int. Conf. MOVPE, Hakone, Japan, 1988.Google Scholar
  10. 10.
    R. People and J. C. Bean, Appl. Phys. Lett. 47 (1985) 322.ADSCrossRefGoogle Scholar
  11. 11.
    A. Kamata, K. Hirahara, M. Kawachi and T. Beppu. Extended Abst. 17th Conf. Sol. State Dev. Mater. Tokyo, Japan (1985) 233.Google Scholar
  12. 12.
    J. Kleiman, R. M. Park and S. B. Qadri, J. Appl. Phys. 61 (1987) 2067.ADSCrossRefGoogle Scholar
  13. 13.
    T. Yao, Y. Okada, S. Matsui and K. Ishida, J. Crystal Growth 81 (1987), 518.ADSCrossRefGoogle Scholar
  14. 14.
    J. Petruzzello, B. L. Greenberg, D. A. Cammack and R. Dalby, J. Appl. Phys. 63 (1988) 2299.ADSCrossRefGoogle Scholar
  15. 15.
    G. D. Studtmann, R. L. Gunshor, L. A. Kolodziejski, M. R. Melloch, J. A. Cooper, Jr., R. F. Pierret, D. P. Munich, C. Choi and N. Otsuka, Appl. Phys. Lett 52 (1988) 1249.ADSCrossRefGoogle Scholar
  16. 16.
    S. Takeuchi, K. Suzuki, K. Maeda and H. Iwanaga, Phil. Mag., A50 (1984) 171.ADSGoogle Scholar
  17. 17.
    S. Fujita, Y. Matsuda and A. Sasaki, J. Crystal Growth 68 (1984) 231.ADSCrossRefGoogle Scholar
  18. 18.
    J. O. Williams, T. L. Ng, A. C. Wright, B. Cockayne and P. J. Wright, J. Crystal Growth 68 (1984) 237.ADSCrossRefGoogle Scholar
  19. 19.
    T. Yao and S. Maekawa, J. Crystal Growth 53 (1981) 423.ADSCrossRefGoogle Scholar
  20. 20.
    S. Fujita, Y. Tomomura and A. Sasaki, J. Appl. Phys. 22 (1983) L583.ADSCrossRefGoogle Scholar
  21. 21.
    A. P. C. Jones, A. W. Brinkman, G. J. Russell, J. Woods, P. J. Wright and B. Cockayne, J. Crystal Growth 79 (1986) 729.ADSCrossRefGoogle Scholar
  22. 22.
    A. P. C. Jones, P. J. Wright, A. W. Brinkman, G. J. Russell, J. Woods & B. Cockayne, IEEE Trans. Electron. Dev., ED-34 (1987) 937.CrossRefGoogle Scholar
  23. 23.
    Yu A. Osip’yan, V. F. Petrenko, A. V. Zaretskii and R. W. Whitworth, Adv. in Phys. 35 (1986), 115.ADSCrossRefGoogle Scholar
  24. 24.
    P. B. Hirsch, Phil. Mag., B52 (1985) 759.Google Scholar
  25. 25.
    W. Stutius, J. Crystal Growth, 59 (1982) 1.ADSCrossRefGoogle Scholar
  26. 26.
    J. Zhou, H. Goto, N. Sawasaki and J. Akasaki, Japan J. Appl. Phys. 27 (1988) 229.ADSCrossRefGoogle Scholar
  27. 27.
    J. R. Cutter, G. J. Russell and J. Woods, J. Crystal Growth 32 (1976) 179.ADSCrossRefGoogle Scholar
  28. 28.
    W. Palz, J. Besson, J. N. Duy and J. Vedel, Proc. 10th IEEE Photovoltaic Specialist Conf., Palo Alto, U.S.A. (1973) 69.Google Scholar
  29. 29.
    P. J. Wright, B. Cockayne and A. J. Williams, J. Crystal Growth 72 (1985) 23.ADSCrossRefGoogle Scholar
  30. 30.
    M. K. B. Saidin, Ph.D. Thesis, University of Durham (1987).Google Scholar
  31. 31.
    D. Howarth and E. H. Sondheim, Proc. Roy. Soc. A219 (1953) 53.ADSGoogle Scholar
  32. 32.
    A. R. Hutson, Phys. Rev. Lett. 4 (1960) 505.ADSCrossRefGoogle Scholar
  33. 33.
    L. R. Weisberg, J. Appl. Phys. 33 (1962) 1817.ADSCrossRefGoogle Scholar
  34. 34.
    G. B. Stringfellow, J. Appl. Phys. 50 (1979) 4178.ADSCrossRefGoogle Scholar
  35. 35.
    K. Kaneco, M. Ayabe and N. Watanabe, Inst. Phys. Conf. Ser. 33a (1977) 216.Google Scholar
  36. 36.
    A. P. C. Jones, A. W. Brinkman, G. J. Russell and J. Woods, Semicond. Sci. Technol. 1 (1986) 41.ADSCrossRefGoogle Scholar
  37. 37.
    T. Yasuda, I. Mitsuishi and H. Kukimoto, Appl. Phys. Lett. 52 (1988) 57.ADSCrossRefGoogle Scholar
  38. 38.
    J. E. Hails, G. J. Russell, A. W. Brinkman and J. Woods, J. Appl. Phys. 60 (1986) 2624.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • A. W. Brinkman
    • 1
  1. 1.Applied Physics, SEASUniversity of DurhamDurhamUK

Personalised recommendations