MBE and ALE of II-VI Compounds: Growth Processes and Lattice Strain in Heteroepitaxy

  • T. Yao
  • M. Fujimoto
  • K. Uesugi
  • S. Kamiyama
Part of the NATO ASI Series book series (NSSB, volume 200)


Recently, dynamical behaviour of reflection high-energy electron diffraction (RHEED) patterns, i.e., RHEED intensity oscillations during molecular beam epitaxy (MBE) growth1,2 andj RHEED intensity variations during atomic layer epitaxy (ALE) growth3,4 of II–VI compounds have been reported. The period of the RHEED intensity oscillation exactly corresponds to a monolayer growth rate of the crystal by MBE. This technique has been utilized to calibrate beam flux, to control growth rate, and to measure quantum well thickness5. The temporal behaviour of specular beam intensity of RHEED during ALE3,4 reflects adsorption processes of impinging molecular beams. Adsorption time for monatomic layer is estimated from the temporal dependence of specular beam intensity. The specular beam intensity varies with time during suspension of ALE at high substrate temperature. This is due to sublimation processes of surface atoms. The sublimation time for the surface layer can be estimated3,4,6,7. Thus the investigation of dynamical behaviour of RHEED intensity gives important informations relevant to surface processes during MBE and ALE.


Molecular Beam Epitaxy Growth High Substrate Temperature RHEED Pattern Atomic Layer Epitaxy ZnSe Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Yao, H. Taneda, and M. Funaki, Jpn. J. Appl. Phys. 25, L952 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    R.L. Gunshor, L.A. Kolodziejski, M.R. Melloch, M. Vaziri, C. Choi, and N. Otsuka, Appl. Phys. Lett. 50, 200 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    T. Yao, Jpn. J. Appl. 25, L942 (1986).ADSCrossRefGoogle Scholar
  4. 4.
    T. Yao and T. Takeda, J. Cryst. Growth 81, 43 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    L.A. Kolodziejski, R.L. Gunshor, N. Otsuka, B.P. Gu, Y. Hefetz, and A.V. Nurmikko, J. Cryst. Growth 81, 491 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    K. Menda, I. Takayasu, T. Minato, and M. Kawashima, Jpn. J. Appl. Phys. 26, L1326 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    H.J. Cornelissen, D.A. Cammack, and R.J. Dalby, J. Vac. Sci. Technol. B6, 769 (1988).Google Scholar
  8. 8.
    T. Yao and T. Takeda, Appl. Phys. Lett. 48, 160 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    T. Yao, M. Fujimoto, and H. Nakao, to appear in Proc. SPIE 944 (1988).Google Scholar
  10. 10.
    P.J. Dobson, B.A. Joyce, J.H. Neave, and J. Zhang, J. Cryst. Growth 81, 1 (1987).ADSCrossRefGoogle Scholar
  11. 11.
    T. Yao, in The Technology and Physics of Molecular Beam Epitaxy, edited by E.H.C. Parker (Plenum, New York, 1985), Chap. 10.Google Scholar
  12. 12.
    T. Kojima, N.J. Kawai, T. Nakagawa, K. Ohta, T. Sakamoto, and M. Kawashima, Appl. Phys. Lett. 47, 286 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    K.C. Mills, in Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides (Butterworths, London, 1974).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • T. Yao
    • 1
  • M. Fujimoto
    • 1
    • 2
  • K. Uesugi
    • 1
    • 2
  • S. Kamiyama
    • 1
    • 2
  1. 1.Electrotechnical LaboratoryTsukuba, Ibaraki 305Japan
  2. 2.Department of Electronic EngineeringTokai UniversityHiratsuka, KanagawaJapan

Personalised recommendations