The Preparation and Study of Detergent-Solubilized Receptors

  • Lee E. Limbird


A number of properties of cell surface receptors cannot be determined in sufficient detail without purification of the putative receptor and subsequent reconstitution of its biological function(s). For example, rigorous proof for the existence of receptor subtypes requires the study of receptor-ligand interactions in a purified preparation. Similarly, determining whether or not receptor affinity states are a manifestation of receptor interaction with components of an effector system is best accomplished by reconstituting isolated receptor and effector components into lipid vesicles of defined composition.


Ammonium Sulfate Polyethylene Glycol Free Ligand Integral Protein Partial Specific Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. Helenius, A., McCaslin, D.R., Fries, E. and Tanford, C. (1979) Properties of detergents. Methods in Enzymol. 56:734–749.CrossRefGoogle Scholar
  2. Helenius, A. and Simons, K. (1975) Solubilization of membranes by detergents. Biochim. Biophys. Acta 415:24–79.Google Scholar
  3. Steck, T. (1974) The organization of proteins in the human red blood cell membrane, J. Cell Biol. 62:1–19.PubMedCrossRefGoogle Scholar
  4. Tanford, C. and Reynolds, J.A. (1976) Characterization of membrane proteins in detergent solutions. Biochim. Biophys. Acta 457:133–170.PubMedCrossRefGoogle Scholar
  5. Tanford, C. (1978) The hydrophobic effect and the organization of living matter. Science 1012–1018.Google Scholar
  6. Tanford, C. (1973) The Hydrophobic Effect, Formation of Micelles and Biological Membranes. New York: John Wiley and Sons.Google Scholar


  1. Ashani, Y. and Catravas, G.N. (1980) Highly reactive impurities in Triton X-100 and Brij 35: Partial characterization and removal. Anal. Biochem. 109:55–62.PubMedCrossRefGoogle Scholar
  2. Atha, D.H. and Ingham, K.C. (1981) Mechanism of precipitation of proteins by polyethylene glycols. J. Biol. Chem. 256:12108–12117.PubMedGoogle Scholar
  3. Bruns, R.F., Lawson-Wendling, K. and Pugsley, T.A. (1983) A rapid filtration assay for soluble receptors using polyethylenimine-treated filters. Anal. Bioch. 132:74–81.CrossRefGoogle Scholar
  4. Cann, J.R. and Hinman, N.D. (1976) Hummel-Dreyer gel chromatographic procedure as applied to ligand-mediated association. Biochem. 15:4614–4622.CrossRefGoogle Scholar
  5. Chang, H.W. and Bock, E. (1980) Pitfalls in the use of commercial nonionic detergents for the solubilization of integral membrane proteins: Sulfhydryl oxidizing contaminants and their elimination. Anal. Bioch. 104:112–117.CrossRefGoogle Scholar
  6. Colichman, E.L. (1951) Spectral study of long chain quarternary ammonium salts in bromphenol blue solutions. J. Am. Chem. Soc. 73:3385–3388.CrossRefGoogle Scholar
  7. Cuatrecasas, P. (1972) Isolation of the insulin receptor of liver and fat-cell membranes. Proc. Natl. Acad. Sci. USA 69:318–322.PubMedCrossRefGoogle Scholar
  8. Edelstein, S.J. and Schachman, E. (1967) The simultaneous determination of partial specific volumes and molecular weights with microgram quantities. J. Biol. Chem. 242:306–311.PubMedGoogle Scholar
  9. Fleming, J.W. and Ross, E.M. (1980) Reconstitution of beta-adrenergic receptors into phospholipid vesicles: Restoration of [125I]-iodohydroxybenzylpindolol binding to digitoninsolubilized receptors. J. Cycl. Nucl. Res. 5:407–419.Google Scholar
  10. Gavish, M., Chang, R.S.L. and Snyder, S.H. (1979) Solubilization of histamine H-1, GABA and benzodiazepine receptors. Life Sci. 25:783–790.PubMedCrossRefGoogle Scholar
  11. Gavish, M., Goodman, R.R. and Snyder, S.H. (1982) Solubilized adenosine receptors in the brain: Regulation by guanine nucleotides. Science 215:1633–1635.PubMedCrossRefGoogle Scholar
  12. Gorrisen, H., Aerts, G., Ilien, B. and Laduron, P. (1981) Solubilization of muscarinic acetylcholine receptors from mammalian brain: An analytical approach. Anal. Biochem. 111:33–41.CrossRefGoogle Scholar
  13. Graham, R.M., Hess, H-J. and Homcy, C.J. (1982) Solubilization and purification of the α1-adrenergic receptor using a novel affinity resin. Proc. Natl. Acad. Sci. USA 79:2186–2192.PubMedCrossRefGoogle Scholar
  14. Green, A.A. and Hughes, W.L. (1955) Protein fractionation on the basis of solubility in aqueous solutions of salts and organic solvents. Methods in Enzymology 1:67–90, especially pp. 72–78.CrossRefGoogle Scholar
  15. Herberg, J.T., Codina, J., Rich, K.A., Rojas, F.J. and Iyengar, R. (1984) The hepatic glucagon receptor. Solubilization, characterization and development of an affinity adsorption assay for the soluble receptor. J. Biol. Chem. 259:9285–9294.PubMedGoogle Scholar
  16. Hock, R.A., Nexo, E. and Hollenberg, M. D. (1980) Solubilization and isolation of the human placenta receptor for epidermal growth factor-urogastrone. J. Biol. Chem. 255:10737–10743.PubMedGoogle Scholar
  17. Hummel, J.P. and Dreyer, W.J. (1962) Measurement of protein-binding phenomena by gel filtration. Biochim. Biophys. Acta 63:530–532.PubMedCrossRefGoogle Scholar
  18. Hurko, O. (1978) Specific [3H] quinuclidinyl benzilate binding activity in digitonin-solubilized preparations from bovine brain. Arch. Biochem. Biophys. 190:434–445.PubMedCrossRefGoogle Scholar
  19. Jain, M.K. and Wagner, R.C. (1980) Introduction to Biological Membranes. New York: John Wiley and Sons, pp. 66–70.Google Scholar
  20. Keith, B., Brown, S. and Srivastava, L.M. (1982) In vitro binding of gibberellin A4 to extracts of cucumber measured by using DEAE-cellulose filters. Proc. Natl. Acad. Sci. USA 79:1515–1519.PubMedCrossRefGoogle Scholar
  21. Krupp, M.N., Connolly, D.T. and Lane, M.D. (1982) Synthesis, turnover, and downregulation of epidermal growth factor receptors in human A431 epidermoid carcinoma cells and skin fibroblasts. J. Biol. Chem. 257:11489–11496.PubMedGoogle Scholar
  22. Leff, S.E. and Creese, I. (1982) Solubilization of D-2 dopamine receptors from canine caudate: Agonist-occupation stabilizes guanine nucleotide sensitive receptor complexes. Biochem. Biophys. Res. Comm. 108:1150–1157.PubMedCrossRefGoogle Scholar
  23. Levi, A., Cimino, M., Mercanti, D. and Calissano, P. (1974) Studies on binding of GTP to the microtubule protein. Biochim. Biophys. Acta 365:450–453.PubMedCrossRefGoogle Scholar
  24. Lew, J.Y., Fong, J.C. and Goldstein, M. (1981) Solubilization of the neuroleptic binding receptor from rat striatum. Eur. J. Pharm. 72:403–405.CrossRefGoogle Scholar
  25. Nexo, E., Hock, R.A. and Hollenberg, M.D. (1979) Lectin-agarose immobilization, a new method for detecting soluble membrane receptors. J. Biol. Chem. 254:8740–8743.Google Scholar
  26. Nicholson, G.L. (1976) Transmembrane control over cell surface components. Biochim. Biophys. Acta. 457:57–108.CrossRefGoogle Scholar
  27. Reynolds, J.A. and Tanford, C. (1976) Determination of molecular weight of the protein moiety in protein-detergent complexes without direct knowledge of detergent binding. Proc. Natl. Acad. Sci. USA 73:4467–4470.PubMedCrossRefGoogle Scholar
  28. Robinson, N.G., Wiginton, D. and Talbert, L. (1984) Phenyl-Sepharose-mediated-exchange chromatography: Its application to exchange of detergents bound to membrane proteins. Biochem. 23:6121–6126.CrossRefGoogle Scholar
  29. Rosenthal, K.S. and Koussale, F. (1983) Critical micelle concentration determination of nonionic detergents with Coomassie Brilliant Blue G-250. Anal. Chem. 55:1115–1117.CrossRefGoogle Scholar
  30. Ross, E.M. and Schatz, G. (1976) Cytochrome of bakers’ yeast. I. Isolation and properties. J. Biol. Chem. 251:1991–1996.PubMedGoogle Scholar
  31. Schmidt, J. and Raftery. M.A. (1973) A simple assay for the study of solubilized acetylcholine receptors. Anal. Bioch. 52:349–354.CrossRefGoogle Scholar
  32. Schneider, W.J., Basu, S.K., McPhaul, M.J., Goldstein, J.L. and Brown, M.S. (1979) Solubilization of the low density lipoprotein receptor. Proc. Natl. Acad. Sci. USA 76:5577–5581.PubMedCrossRefGoogle Scholar
  33. Smith, S.K. and Limbird, L.E. (1981) Solubilization of human platelet α-adrenergic receptors: Evidence that agonist occupancy of the receptor stabilizes receptor-effector interactions. Proc. Natl. Acad. Sci. USA 78:4026–4030.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1986

Authors and Affiliations

  • Lee E. Limbird
    • 1
  1. 1.Vanderbilt UniversityNashvilleUSA

Personalised recommendations