Advertisement

Some History Leading to Design Criteria for Bayesian Prediction

  • Anthony C. Atkinson
  • V. V. Fedorov
Chapter
  • 243 Downloads
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 51)

Abstract

After a short history of optimum design we develop design criteria for Bayesian prediction in which a combined forecast is used

Keywords

D-optimality discrimination between models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, A.C. and Bailey, R.A. (2001). One hundred years of designed experiments on and off the pages of “Biometrika”. Biometrika 88. (In press).Google Scholar
  2. Atkinson, A.C. and Cox, D.R. (1974). Planning experiments for discriminating between models (with discussion). Journal of the Royal Statistical Society B 36, 321–348.MathSciNetzbMATHGoogle Scholar
  3. Atkinson, A.C. and Donev, A.N. (1992). Optimum Experimental Designs. Oxford: Oxford University Press.zbMATHGoogle Scholar
  4. Atkinson, A.C. and Fedorov, V.V. (1975a). The design of experiments for discriminating between two rival models. Biometrika 62, 57–70.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Atkinson, A.C. and Fedorov, V.V. (1975b). Optimal design: experiments for discriminating between several models. Biometrika 62, 289–303.MathSciNetzbMATHGoogle Scholar
  6. Box, G. E. P. and Hill, W. J. (1967). Discrimination among mechanisitc models. Technometrics 9, 57–71.MathSciNetCrossRefGoogle Scholar
  7. Box, G.E.P. and Hunter, W.G. (1965). Sequential design of experiments for nonlinear models. In Proceedings IBM Scientific Computing Symposium: Statistics Ed. J. J. Korth, pp. 113–137. White Plains: IBM.Google Scholar
  8. Box, G.E.P. and Lucas, H.L. (1959). Design of experiments in nonlinear situations. Biometrika 46, 77–90.MathSciNetzbMATHGoogle Scholar
  9. Chaloner, K. and Larntz, K. (1989). Optimal Bayesian design applied to logistic regression experiments. Journal of Statistical Planning and Inference 21, 191–208.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: a review. Statistical Science 10, 273–304.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Chernoff, H. (1953). Locally optimal designs for estimating parameters. Annals of Mathematical Statistics 24, 586–602.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Cover, T.M. and Thomas, M. (1991). Elements of Information Theory. New York: Wiley.zbMATHCrossRefGoogle Scholar
  13. de la Garza, A. (1954). Spacing of information in polynomial regression. Annals of Mathematical Statistics 25, 123–130.MathSciNetzbMATHCrossRefGoogle Scholar
  14. Elfving, G. (1952). Optimum allocation in linear regression theory. Annals of Mathematical Statistics 23, 255–262.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Fedorov, V.V. (1972). Theory of Optimal Experiments. New York: Academic-Press.Google Scholar
  16. Fedorov, V.V. and Hackl, P. (1997). Model-Oriented Design of Experiments. Lecture Notes in Statistics 125. New York: Springer.zbMATHCrossRefGoogle Scholar
  17. Fedorov, V. and Khabarov, V. (1986). Duality of optimal designs for model discrimination and parameter estimation. Biometrika 73, 183–190.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Fedorov, V.V. and Malyutov, M.B. (1972). Optimal designs in regression problems. Math. Operationsforsc. u. Statistik 3, 281–308.MathSciNetzbMATHCrossRefGoogle Scholar
  19. Fedorov, V.V. and Pázman, A. (1968). Design of physical experiments (statistical methods). Fortschritte der Physik 24, 325–345.CrossRefGoogle Scholar
  20. Guest, P.G. (1958). The spacing of observations in polynomial regression. Annals of Mathematical Statistics 29, 294–299.MathSciNetzbMATHCrossRefGoogle Scholar
  21. Hoel, P.G. (1958). Efficiency problems in polynomial estimation. Annals of Mathematical Statistics 29, 1134–1145.MathSciNetzbMATHCrossRefGoogle Scholar
  22. Hoeting, J.A., Madigan, D., Raftery A.E. and Volinsky C.T. (1999). Bayesian model averaging: a tutorial. Statistical Science 14, 382–417.MathSciNetzbMATHCrossRefGoogle Scholar
  23. Kiefer, J. (1958). On the nonrandomized optimality and randomized nonoptimality of symmetrical designs. Annals of Mathematical Statistics 29, 675–699.MathSciNetzbMATHCrossRefGoogle Scholar
  24. Kiefer, J. (1959). Optimum experimental designs (with discussion). J. Royal Statistical Soc. B 21, 272–319.MathSciNetzbMATHGoogle Scholar
  25. Kiefer, J. and Wolfowitz, J. (1960). The equivalence of twoextremum problems. Canadian Journal of Mathematics 12, 363–366.MathSciNetzbMATHCrossRefGoogle Scholar
  26. Läuter, E. (1974). Experimental design in a class of models. Mathematische Operationsforschung und Statistik, Serie Statistik 5, 379–398.zbMATHCrossRefGoogle Scholar
  27. Meyer, R.D., Steinberg, D.M. and Box, G.E.P. (1996). Follow-up designs to resolve confounding in multifactor experiments. Technometrics 38, 303–332.zbMATHCrossRefGoogle Scholar
  28. O’Hagan, A. (1994). Kendalls Advanced Theory of Statistics, Volume 2B: Bayesian Inference. London: Edward Arnold.Google Scholar
  29. Pukelsheim, F. (1993). Optimal Design of Experiments. New York: Wiley.zbMATHGoogle Scholar
  30. Sebastiani, P. and Wynn, H.P. (2000). Maximum entropy sampling and optimal Bayesian experimental design. J. Royal Statistical Soc. B 62, 145–157.MathSciNetzbMATHCrossRefGoogle Scholar
  31. Silvey, S.D. and Titterington, D.M. (1973). A geometric approach to optimal design theory. Biometrika 60, 15–19.MathSciNetCrossRefGoogle Scholar
  32. Smith, K. (1918). On the standard deviations of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of observations. Biometrika 12, 1–85.Google Scholar
  33. Wald, A. (1943). On the efficient design of statistical investigations. Annals of Mathematical Statistics 14, 134–140.MathSciNetzbMATHCrossRefGoogle Scholar
  34. Wynn, H.P. (1970). The sequential generation of D-optimal experimental designs. Annals of Mathematical Statistics 41, 1055–1064.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Anthony C. Atkinson
    • 1
  • V. V. Fedorov
    • 2
  1. 1.Department of StatisticsLondon School of EconomicsLondonUK
  2. 2.SmithKline Beecham PharmaceuticalsUK

Personalised recommendations