Gröbner Basis Methods in Mixture Experiments and Generalisations

  • Beatrice Giglio
  • Henry P. Wynn
  • Eva Riccomagno
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 51)


The theory of mixture designs has a considerable history. We address here the important issue of the analysis of an experiment having in mind the algebraic interpretation of the structural restriction Σx i = 1. We present an approach for rewriting models for mixture experiments, based on constructing homogeneous orthogonal polynomials using Gröbner bases. Examples are given utilising the approach.


mixture experiments Gröbner Bases orthogonal polynomials homogeneous polymomials 


  1. Bates, R., Giglio, B., Riccomagno, E. and Wynn, H.R (1998). Gröbner basis methods in polynomial modelling. In COMPSTAT98: Proceedings in Computational Statistics Eds. R.L. Payne and P.J. Green, pp. 179–184. Heidelberg: Physica-Verlag.Google Scholar
  2. Caboara, M., Pistone, G., Riccomagno, E. and Wynn, H.P. (1997). The fan of an experimental design. SCU Report Number 10, University of Warwick.Google Scholar
  3. Cornell, J. (1990). Experiments with Mixtures. New York: Wiley.zbMATHGoogle Scholar
  4. Cox, D., Little, J. and O’Shea, J. (1997). Ideals, Varieties and Algorithms, 2nd Edn. New York: Springer-Verlag.Google Scholar
  5. Giglio, B., Riccomagno, E. and Wynn, H.P. (2000). Gröbner basis strategies in regression. Applied Statistics (to appear).Google Scholar
  6. Draper, N. R. and Smith, H. (1981). Applied Regression Analysis, 2nd Edn. New York: Wiley.zbMATHGoogle Scholar
  7. Holliday, T., Pistone, G., Riccomagno, E. and Wynn, H.P. (1999). The application of computational geometry to the design and analysis of experiments: a case study. Computational Statistics (in press).Google Scholar
  8. Pistone, G., Riccomagno, E. and Wynn, H.P. (2000). Algebraic Statistics. London: Chapman and Hall, CRC (in preparation).CrossRefGoogle Scholar
  9. Pistone, G. and Wynn, H.P. (1996). Generalised confounding with Gröbner Bases. Biometrika 83, 653–666.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Riccomagno, E. (1997). Algebraic Identifiability in Experimental Design and Related Ttopics. PhD thesis, University of Warwick.Google Scholar
  11. Riccomagno, E., Pistone, G. and Wynn, H.P. (1998). Gröbner bases and factorisation in discrete probability and Bayes. Statistics and Computing (in press). (Special issue for the workshop “Statistics and Computing”, Montreal, 1998).Google Scholar
  12. Riccomagno, E., Pistone, G. and Wynn, H.P. (1999). Polynomial encoding of discrete probability. ISI Helsinki, 1999 Abstract. Submitted to Int. Stat. Review.Google Scholar
  13. Riccomagno, E. and Wynn, H.P. (2000). Gröbner bases, ideals and a generalised divided difference formula. Num. Math. (submitted).Google Scholar
  14. Robbiano, L. (1985). Term orderings on the polynomial rings. EUROCAL’85 LNC Series 204, 513–517.MathSciNetGoogle Scholar
  15. L. Robbiano (1998). Gröbner bases and Statistics In Proceedings of the International Conference “33 years of Gröbner Bases”. Cambridge University Press, London Mathematical Society Lecture Notes (in press).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Beatrice Giglio
    • 1
  • Henry P. Wynn
    • 1
  • Eva Riccomagno
    • 2
  1. 1.Department of StatisticsUniversity of WarwickCoventryUK
  2. 2.EURANDOMEindhovenNetherlands

Personalised recommendations