Efficient Designs for Paired Comparisons with a Polynomial Factor

  • H. Großmann
  • H. Holling
  • U. Graßhoff
  • R. Schwabe
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 51)


In psychological research paired comparisons, which demand judges to evaluate the trade-off between two alternatives, have been shown to yield valid estimates of the judges’ preferences. For this situation we present optimal and efficient designs in a response surface setting where the alternatives are modelled by a polynomial.


paired comparisons optimal design equivalence theorem symmetrization polynomial regression additive model marginal design 


  1. Atkins, J.E. and Cheng, C.-S. (1999). Optimal regression designs in the presence of random block effects. J. Statist. Plann. Inference 77, 321–335.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Atwood, C.L. (1969). Optimal and efficient designs of experiments. Ann. Math. Statist. 40, 1570–1602.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Bateson, J.E.G., Reibstein, D.J. and Boulding, W. (1987). Conjoint analysis reliability and validity: A framework for future research. In Review of Marketing Ed. M.J. Houston, pp. 451–481. Chicago: American Marketing Association.Google Scholar
  4. David, H.A. (1963). The Method of Paired Comparisons. London: Griffin.Google Scholar
  5. Dette, H. and Studden, W.J. (1997). The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis. New York: Wiley.zbMATHGoogle Scholar
  6. Fedorov, V.V. (1972). Theory of Optimal Experiments. New York: Academic Press.Google Scholar
  7. Kiefer, J. (1959). Optimal experimental designs. J. R. Statist. Soc. B 21, 272–304.MathSciNetzbMATHGoogle Scholar
  8. Kiefer, J. and Wolfowitz, J. (1960). The equivalence of twoextremum problems. Can. J. Math. 12, 363–366.MathSciNetzbMATHCrossRefGoogle Scholar
  9. McClelland, G.H. (1997). Optimal design in psychological research. Psychological Methods 2, 3–19.CrossRefGoogle Scholar
  10. Rafajlowicz, E. and Myszka, W. (1992). When product type experimental design is optimal? — Brief survey and new results. Metrika 39, 321–333.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Schwabe, R. (1996). Optimum Designs for Multi-Factor Models. Lecture Notes in Statistics 113. New York: Springer-Verlag.CrossRefGoogle Scholar
  12. Silvey, S.D. (1972). Discussion of the paper by H.P. Wynn. J. R. Statist. Soc. B 34, 174–175.Google Scholar
  13. van Berkum, E.E.M. (1987). Optimal Paired Comparison Designs for Factorial Experiments, CWI Tract 31.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • H. Großmann
    • 1
  • H. Holling
    • 1
  • U. Graßhoff
    • 2
  • R. Schwabe
    • 3
  1. 1.Psychologisches Institut IVWestfälische Wilhelms-UniversitätMünsterGermany
  2. 2.Institut für Mathematik IFreie Universität BerlinBerlinGermany
  3. 3.Institut für Medizinische BiometrieEberhard-Karls-UniversitätTübingenGermany

Personalised recommendations