Circular Intensity Differential Scattering Measurements of Planar and Focal Conic Orientations of Cholesteric Liquid Crystals

  • K. Hall
  • K. S. Wells
  • D. Keller
  • B. Samori
  • M. F. Maestre
  • I. TinocoJr.
  • C. Bustamante


We have applied the recently developed technique of circular intensity differential scattering (CIDS) to the study of oriented liquid crystals. The chirality of the liquid crystals and the ease of manipulation of their helical parameters make them an ideal system for investigating the dependence of the CIDS pattern on handedness and pitch. We have studied both right- and left-handed liquid crystals of pitch from 460 nm to 4 microns, with the helix axis oriented either parallel (planar orientation) or perpendicular (focal conic orientation) to the incident beam. The results showed that CIDS is sensitive to the handedness of the helix, for when two liquid crystals of the same pitch but opposite handedness were compared, the signs of their respective CIDS patterns were reversed.

Difficulties encountered in performing these experiments are discussed. The comparison of the results with a theoretical model that uses the second Born approximation shows good agreement.


Liquid Crystal Born Approximation Planar Orientation Quartz Plate Stray Light 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. BUSTAMANTE, M.F. MAESTRE, I. TINOCO, JR., J. Chem. Phys., 73, 4273–4281 (1980).CrossRefGoogle Scholar
  2. 2.
    C. BUSTAMANTE, M. F. MAESTRE, I. TINOCO, JR., J. Chem. Phys., 73, 6046–6055 (1980).CrossRefGoogle Scholar
  3. 3.
    C. BUSTAMANTE, I. TINOCO, JR., M. F. MAESTRE, J. Chem. Phys., 74, 4839–4850 (1981).CrossRefGoogle Scholar
  4. 4.
    C. BUSTAMANTE, I. TINOCO, JR., M. F. MAESTRE, J. Chem. Phys., 76, 3440–3446 (1982).CrossRefGoogle Scholar
  5. 5.
    M. F. MAESTRE, C. BUSTAMANTE, T. L. HAYES, J. A. SUBIRANA, I. TINOCO, JR., Nature, 298, 773–774 (1982).CrossRefGoogle Scholar
  6. 6.
    I. TINOCO, JR., C. BUSTAMANTE, M. F. MAESTRE, Structural Molecular Biology: Methods and Applications, eds D.B. Davies, W. Saenger, and S. S. Danyluk, ( Plenum, New York, 1982 ).Google Scholar
  7. 7.
    M.C. MAUGUIN, Bull. Soc. Franc. Miner. Cryst., 34, 71 (1911).Google Scholar
  8. 8.
    C. W. OSEEN, Trans. Faraday Soc., 29, 883 (1933).CrossRefGoogle Scholar
  9. 9.
    H. DE VRIES, Actn. Cryst., 4, 219 (1951).CrossRefGoogle Scholar
  10. 10.
    E. I. KATS, Soy. Phys., JETP, 32, 1004 (1971).Google Scholar
  11. 11.
    R. NITYANANDA, V. D. KIKI, Proceedings of the International Liquid Crystal Conference, Bangalore, India, ( December, 1973 ) ( Pramana Supplement I,).Google Scholar
  12. 12.
    C. BUSTAMANTE, K. S. WELLS, D. KELLER, B. SAMORI, M. F. MAESTRE, I. TINOCO, Jr., Molecular Crystals and Liquid Crystals, (in press, 1984).Google Scholar
  13. 13.
    J. KATZ, K. S. WELLS, D. USSERY, M. F. MAESTRE, C. BUSTAMANTE J. of Sei. Inst, (accepted, 1984 ).Google Scholar
  14. 14.
    C. BUSTAMANTE, M. F. MAESTRE, D. KELLER, I. TINOCO, JR., J. Chem. Phys., 80, 4817–4823 (1984).CrossRefGoogle Scholar
  15. 15.
    D. KELLER, Ph.D. Thesis, Department of Chemistry, University of California, Berkeley (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • K. Hall
    • 1
  • K. S. Wells
    • 2
  • D. Keller
    • 2
  • B. Samori
    • 3
  • M. F. Maestre
    • 4
  • I. TinocoJr.
    • 1
  • C. Bustamante
    • 2
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of ChemistryUniversity of New MexicoAlbuquerqueUSA
  3. 3.Istituto di Chimica degli IntermediUniversitá di BolognaItalia
  4. 4.Division of Biology and Medical PhysicsLawrence Berkeley LaboratoryUSA

Personalised recommendations