Mucosal Immunity

Molecular and Cellular Aspects of Immune Protection to Enteric Infections
  • David W. Pascual
  • Hiroshi Kiyono
  • Jerry R. McGhee
Part of the Infectious Agents and Pathogenesis book series (IAPA)


Until recently, investigation into the mechanisms of mucosal immune protection has been overlooked as an integral component of immune surveillance. The failure to measure B- and T-cell responses in various mucosa-associated tissues and their secretions was complicated by difficulties in the isolation and characterization of mucosal lymphoid cells and in obtaining external secretions. The relevance of investigating mucosal immunity has been accentuated by recent developments, i.e., the failure of conventional vaccines to protect from mucosal pathogens when administered in parenteral sites and by the need for a mucosal vaccine to prevent the sexual transmission of HIV. In this review, we will discuss the nature of the gastrointestinal (GI) immune system and its subsequent manipulation, i.e., for vaccine development, to effect protection to enteric infectious agents. Furthermore, a better understanding of the GI immune system will contribute to the application of mucosal immunity for other tissues that are exposed to ubiquitous pathogens.


Vasoactive Intestinal Peptide Germinal Center Vasoactive Intestinal Polypeptide Oral Immunization Inductive Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McGhee, J. R., Mestecky, J., Dertzbaugh, M. T., Eldridge, J. H., Hirasawa, M., and Kiyono, H., 1992, The mucosal immune system: From fundamental concepts to vaccine development, Vaccine 10:75–88.PubMedCrossRefGoogle Scholar
  2. 2.
    Kiyono, H., Bienenstock, J., McGhee, J. R., and Ernst, P. B., 1992, The mucosal immune system: Features of inductive and effector sites to consider in mucosal immunization and vaccine development, Reg. Immunol. 4:54–62.PubMedGoogle Scholar
  3. 3.
    Conley, M. E., and Delacroix, D. L., 1987, Intravascular and mucosal immunoglobulin A: Two separate but related systems of immune defense? Ann. Intern. Med. 106:892–899.PubMedCrossRefGoogle Scholar
  4. 4.
    Mestecky, J., and McGhee, J. R., 1987, Immunoglobulin A (IgA): Molecular and cellular interactions involved in IgA biosynthesis and immune response, Adv. Immunol. 40:153–245.PubMedCrossRefGoogle Scholar
  5. 5.
    Brandtzaeg, P., 1989, Overview of the mucosal immune system, Curr. Top. Microbiol. Immunol. 146:13–25.PubMedCrossRefGoogle Scholar
  6. 6.
    Mestecky, J., and Russell, M. W., 1986, IgA subclasses, Monogr. Allergy 19:277–301.PubMedGoogle Scholar
  7. 7.
    Brandtzaeg, P., 1994, Distribution and characteristics of mucosal immunoglobulin-producing cells, in: Handbook of Mucosal Immunology (P. L. Ogra, J. Mestecky, M. E. Lamm, W. Strober, J. R. McGhee, and J. Bienenstock, eds.), Academic Press, San Diego, pp. 251–262.Google Scholar
  8. 8.
    Kett, K., Brandtzaeg, P., Radl, J., and Haaijman, J. F., 1986, Different subclass distribution of IgA-producing cells of human lymphoid organs and various secretory tissues, J. Immunol. 136:3631–3635.PubMedGoogle Scholar
  9. 9.
    Brandtzaeg, P., 1984, Immune functions of human nasal mucosa and tonsils in health and disease, in: Immunology of the Lung and Upper Respiratory Tract (J. Bienenstock, ed.), McGraw-Hill, New York, pp. 28–95.Google Scholar
  10. 10.
    Fujihashi, K., McGhee, J. R., Lue, C., Beagley, K. W., Taga, T., Hirano, T., Kishimoto, T., Mestecky, J., and Kiyono, H., 1991, Human appendix B cells naturally express receptors for and respond to interleukin 6 with selective IgAl and IgA2 synthesis, J. Clin. Invest. 88:248–252.PubMedCrossRefGoogle Scholar
  11. 11.
    Kilian, M., Mestecky, J., and Russell, M. W., 1988, Defense mechanisms involving Fc-dependent functions of immunoglobulin A and their subversion by bacterial immunoglobulin A proteases, Microbiol. Rev. 52:296–303.PubMedGoogle Scholar
  12. 12.
    Putnam, F. W., Liu, Y. S., and Low, T. L. K., 1979, Primary structure of human IgAl immunoglobulin. IV. Streptococcal IgAl protease digestion: Fab and Fc fragment and the complete amino acid sequence of the al heavy chain, J. Biol. Chem. 254:2865–2874.PubMedGoogle Scholar
  13. 13.
    Tomasi, T. B., and Czerwinski, D. S., 1968, The secretory IgA systems, in: Immunological Deficiency Disease in Man (D. Bergsma, ed.), Volume 4, The National Foundation, New York, pp. 270–275.Google Scholar
  14. 14.
    Krajci, P., Solberg, R., Sanberg, M., Oyen, O., Jahnsen, T, and Brandtzaeg, P., 1989, Molecular cloning of the human transmembrane secretory component (poly-Ig receptor) and its mRNA expression in human tissues, Biochem. Biophys. Res. Commun. 158:783–789.PubMedCrossRefGoogle Scholar
  15. 15.
    Cornes, J. S., 1965, Number, size, and distribution of Peyer’s patches in the human small intestine. Part 1: The development of Peyer’s patches, Gut 6:225–229.PubMedCrossRefGoogle Scholar
  16. 16.
    Cornes, J. S., 1965, Number, size, and distribution of Peyer’s patches in the human small intestine. Part 2: The effect of age on Peyer’s patches, Gut 6:230–233.CrossRefGoogle Scholar
  17. 17.
    Owen, R. L., and Jones, A. L., 1974, Epithelial cell specialization within human Peyer’s patches: An ultrastructural study of intestinal lymphoid follicles, Gastroenterology 66:189–203.PubMedGoogle Scholar
  18. 18.
    Owen, R. L., 1977, Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer’s patch in the normal unobstructed mouse intestine: An ultrastructural study, Gastroenterology 72:440–451.PubMedGoogle Scholar
  19. 19.
    Bockman, D. E., and Cooper, M. D., 1973, Pinocytosis by epithelium associated with lymphoid follicles in the bursa of Fabricius, appendix, and Peyer’s patches. An electron microscopic study, Am. J. Anat. 136:455–477.PubMedCrossRefGoogle Scholar
  20. 20.
    Kato, T., and Owen, R. L., 1994, Structure and function of intestinal mucosal epithelium, in: Handbook of Mucosal Immunology (P. L. Ogra, J. Mestecky, M. E. Lamm, W. Strober, J. R. McGhee, and J. Bienenstock, eds.), Academic Press, San Diego, pp. 11–26.Google Scholar
  21. 21.
    Neutra, M. R., Phillips, T. L., Mayer, E. L., and Fishkind, D. J., 1987, Transport of membrane-bound macromolecules by M cells in follicle-associated epithelium of rabbit Peyer’s patch, Cell Tissue Res. 247:537–546.PubMedCrossRefGoogle Scholar
  22. 22.
    Wolf, J. L., Kauffman, R. S., Finberg, R., Dambrauskas, R., Fields, B. N., and Trier, J. S., 1983, Determinants of reovirus interaction with the intestinal M cells and absorptive cells of murine intestine, Gastroenterology 85:291–300.PubMedGoogle Scholar
  23. 23.
    Amerongen, H. M., Weltzin, R., Farnet, C. M., Michetti, P., Haseltine, W. A., and Neutra, M. R., 1991, Transepithelial transport of HIV-1 by intestinal M cells: A mechanism for transmission of AIDS, J. AIDS 4:760–765.Google Scholar
  24. 24.
    Sicinki, P., Rowinski, J., Warchol, J. R., Jarzabek, Z., Gut, W., Szczgiel, B., Bielecki, K., and Koch, G., 1990, Poliovirus type 1 enters the human host through intestinal Mcells, Gastroenterology 98:56–58.Google Scholar
  25. 25.
    Weltzin, R. A., Lucia-Jandris, P., Michetti, P., Fields, B. N., and Kraehenbuhl, J. P., 1989, Binding and transepithelial transport of immunoglobulins by intestinal M cells: Demonstration using monoclonal IgA antibodies against enteric viral proteins, J. Cell Biol. 108: 1673–1685.PubMedCrossRefGoogle Scholar
  26. 26.
    Nagura, H., Ohtani, H., Masuda, T., Kimura, M., and Nakamura, S., 1991, HLA-DR expression on M cells overlying Peyer’s patches is a common feature of human small intestine, Acta Pathol. Jpn. 41:818–823.PubMedGoogle Scholar
  27. 27.
    Allan, C. H., Mendrick, D. L., and Trier, J. S., 1993, Rat intestinal M cells contain acidic endosomal-lysosomal compartments and express class II major histocompatibility complex determinants, Gastroenterology 104:698–708.PubMedGoogle Scholar
  28. 28.
    Brandtzaeg, P., and Bjerke, K., 1990, Immunomorphological characteristics of human Peyer’s patches, Digestion 46:262–273.PubMedCrossRefGoogle Scholar
  29. 29.
    Jones, P. P., and Cebra, J. J., 1974, Restriction of gene expression in B lymphocytes and their progeny. III. Endogenous IgA and IgM on the membranes of different plasma cell precursors, J. Exp. Med. 140:966–976.PubMedCrossRefGoogle Scholar
  30. 30.
    Butcher, E. C., Rouse, R. V., Coffman, R. L., Nottenburg, C. N., Hardy, R. R., and Weissman, I. L., 1982, Surface phenotype of Peyer’s patch germinal center cells: Implication for the role of germinal centers in B cell differentiation, J. Immunol. 129:2698–2707.PubMedGoogle Scholar
  31. 31.
    Lebman, D. A., Griffin, P. M., and Cebra, J. J., 1987, Relationship between expression of IgA by Peyer’s patch cells and functional IgA memory cells, J. Exp. Med. 166:1405–1418.PubMedCrossRefGoogle Scholar
  32. 32.
    McGhee, J. R., Mestecky, J., Elson, C. O., and Kiyono, H., 1989, Regulation of IgA synthesis and immune responses by T cells and interleukins, J. Clin. Immunol. 9:175–199.PubMedCrossRefGoogle Scholar
  33. 33.
    Spalding, D. M., Koopman, W. J., Eldridge, J. L., McGhee, J. R., and Steinman, R., 1983, Accessory cells in murine Peyer’s patch: I. Identification and enrichment of functional dendritic cells, J. Exp. Med. 157:1646–1659.PubMedCrossRefGoogle Scholar
  34. 34.
    Spalding, D. M., Williamson, S. I., Koopman, W. J., and McGhee, J. R., 1984, Preferential induction of polyclonal IgA secretion by murine Peyer’s patch dendritic cell-T cell mixtures, J. Exp. Med. 160:941–946.PubMedCrossRefGoogle Scholar
  35. 35.
    Kanof, M. E., Strober, W., Fiocchi, C., Zeitz, M., and James, S. P., 1988, CD4 positive Leu-8 negative helper-inducer T cells predominate in the human intestinal lamina propria, J. Immunol 141:3029–3036.PubMedGoogle Scholar
  36. 36.
    Bull, D. M., and Bookman, M. A., 1977, Isolation and functional characterization of human intestinal mucosal lymphoid cells, J. Clin. Invest. 59:966–974.PubMedCrossRefGoogle Scholar
  37. 37.
    Qiao, L., Schürman, G., Betzler, M., and Meuer, S. C., 1991, Functional properties of human lamina propria T lymphocytes assessed with mitogenic monoclonal antibodies, Immunol Res. 10:218–225.PubMedCrossRefGoogle Scholar
  38. 38.
    James, S. P., and Zeitz, M., 1994, Human gastrointestinal mucosal T cells, in: Handbook of Mucosal Immunology (P. L. Ogra, J. Mestecky, M. E. Lamm, W. Strober, J. R. McGhee, and J. Bienenstock, eds.), Academic Press, San Diego, pp. 275–285.Google Scholar
  39. 39.
    James, S. P., Kwan, W. C., and Sneller, M. C., 1990, T cells in the inductive and effector compartments of the intestinal mucosal immune system of nonhuman primates differ in lymphokine mRNA expression, lymphokine utilization, and regulatory function, J. Immunol 144:1251–1256.PubMedGoogle Scholar
  40. 40.
    Blier, P., and Bothwell, A., 1987, A limited number of B cell lineages generates the heterogeneity of a secondary immune response, J. Immunol 139:3996–4006.PubMedGoogle Scholar
  41. 41.
    Weinstein, P. D., and Cebra, J. J., 1991, The preference for switching to IgA expression by Peyer’s patch germinal center B cells is likely due to the intrinsic influence of their micro-environment, J. Immunol. 147:4126–4135.PubMedGoogle Scholar
  42. 42.
    Liu, Y.-J., Johnson, G. D., Gordon, J., and McLennan, I. C. M., 1992, Germinal centres in T-cell-dependent antibody responses, Immunol Today 13:17–21.PubMedCrossRefGoogle Scholar
  43. 43.
    Rouse, R., Ledbetter, J., and Weissman, I. L., 1982, Mouse lymph node germinal centers contain a selected subset of T cells: The helper phenotype, J. Immunol. 128:2243–2246.PubMedGoogle Scholar
  44. 44.
    Krall, W. J., and Braun, J., 1992, In vivo retroviral marking of antigen-specific B lymphocytes, Semin. Immunol. 4:19–28.PubMedGoogle Scholar
  45. 45.
    Mega, J., Bruce, M. G., Beagley, K. W., McGhee, J. R., Taguchi, T., Pitts, A. M., Bucy, R. P., Eldridge, J. H., Mestecky, J., and Kiyono, H., 1991, Regulation of mucosal responses by CD4+ T lymphocytes: Effect of anti-L3T4 treatment on the gastrointestinal immune system, Int. Immunol 3:793–805.PubMedCrossRefGoogle Scholar
  46. 46.
    Furness, J. B., and Costa, M., 1980, Types of nerves in the enteric nervous system, Neuroscience 5:1–20.PubMedCrossRefGoogle Scholar
  47. 47.
    Chang, M. M., and Leeman, S. E., 1971, Amino acid sequence of substance P, Nature New Biol. 232:86–87.PubMedCrossRefGoogle Scholar
  48. 48.
    Erspamer, V., 1981, The tachykinin peptide family, Trends Neurosci. 4:267–269.CrossRefGoogle Scholar
  49. 49.
    Nawa, H., Kotani, H., and Nakanishi, S., 1984, Tissue-specific generation of two pre-protachykinin mRNAs from one gene by alternative RNA splicing, Nature 312:729–734.PubMedCrossRefGoogle Scholar
  50. 50.
    Helke, C. J., Krause, J. E., Mantyh, P. W., and Bannon, M. J., 1990, Diversity in mammalian tachykinin peptidergic neurons: Multiple peptides, receptors, and regulatory mechanisms, FASEBJ. 4:1606–1615.Google Scholar
  51. 51.
    Pernow, B., 1983, Substance P, Pharmacol Rev. 35:85–140.PubMedGoogle Scholar
  52. 52.
    Hershey, A. D., and Krause, J. E., 1990, Molecular characterization of a functional cDNA encoding the rat substance P receptor, Science 247:958–962.PubMedCrossRefGoogle Scholar
  53. 53.
    Pascual, D. W., Stanisz, A. M., and Bost, K. L., 1994, Functional aspects of the peptidergic circuit in mucosal immunity, in: Handbook of Mucosal Immunology (P. L. Ogra, J. Mestecky, M. E. Lamm, W. Strober, J. R. McGhee, and J. Bienenstock, eds.), Academic Press, San Diego, pp. 203–216.Google Scholar
  54. 54.
    Bost, K. L., 1993, Expression of the mRNA encoding substance P receptors by activated macrophages, J. Immunol. 150(Part II):54A, #297.Google Scholar
  55. 55.
    Cook, G. A., Elliott, D., Metwali, A., Blum, A. M., Sandor, M., Lynch, R., and Weinstock, J. V., 1994, Molecular evidence that granuloma T lymphocytes in murine Schistosomiasis mansoni express an authentic substance P (NK-1) receptor, J. Immunol. 152:1830–1835.PubMedGoogle Scholar
  56. 56.
    van Ginkel, F. W., Bost, K. L., Kiyono, H., McGhee, J. R., and Pascual, D. W., 1994, IL-lα production by the C6 astrocyte cell line is regulated through its substance P (SP) receptor, FASEB J. 8:A247, #1426.Google Scholar
  57. 57.
    Feiten, D. L., Feiten, S. Y., Bellinger, D. L., Carlson, S. L., Ackerman, K. D., Madden, K. S., Olschowki J. A., and Livnat, S., 1987, Noradrenergic sympathetic neural interactions with the immune system: Structure and function, Immunol. Rev. 100:225–260.CrossRefGoogle Scholar
  58. 58.
    Stead, R. H., Bienenstock, J., and Stanisz, A. M., 1987, Neuropeptide regulation of mucosal immunity, Immunol. Rev. 100:333–359.PubMedCrossRefGoogle Scholar
  59. 59.
    Stanisz, A. M., Scicchitano, R., Dazin, P., Bienenstock, J., and Payan, D. G., 1987, Distribution of substance P receptors on spleen and Peyer’s patch T and B cells, J. Immunol. 139: 749–754.PubMedGoogle Scholar
  60. 60.
    Pascual, D. W., Xu-Amano, J., Kiyono, H., McGhee, J. R., and Bost, K. L., 1991, Substance P acts directly upon cloned B lymphoma cells to enhance IgA and IgM production, J. Immunol. 146:2130–2136.PubMedGoogle Scholar
  61. 61.
    Pascual, D. W., McGhee, J. R., Kiyono, H., and Bost, K. L., 1991, Neuroimmune modulation of lymphocyte function: I. Substance P enhances immunoglobulin synthesis in LPS activated murine splenic B cells, Int. Immunol. 3:1223–1229.PubMedCrossRefGoogle Scholar
  62. 62.
    Pascual, D. W., Bost, K. L., Beagley, K. W., Kiyono, H., and McGhee, J. R., 1995, Substance P promotes Peyer’s patch B and splenic B cell differentiation, in: Advances in Mucosal Immunology (J. Mestecky et al., eds.), Plenum Press, New York, pp. 55–59.CrossRefGoogle Scholar
  63. 63.
    Stanisz, A. M., Befus, D., and Bienenstock, J., 1986, Differential effects of vasoactive intestinal peptide, substance P, and somatostatin on immunoglobulin synthesis and proliferation by lymphocytes from Peyer’s patches, mesenteric lymph nodes, and spleen, J. Immunol. 136:152–156.PubMedGoogle Scholar
  64. 64.
    Keast, J. R., Furness, J. B., and Costa, M., 1985, Distribution of certain peptide-containing nerve fibres and endocrine cells in the gastrointestinal mucosa in five mammalian species, J. Comp. Neurol. 236:403–422.PubMedCrossRefGoogle Scholar
  65. 65.
    Said, S. I., and Mutt, V., 1970, Polypeptide with broad biological activity: Isolation from small intestine, Science 169:1217–1218.PubMedCrossRefGoogle Scholar
  66. 66.
    Linder, S., Barkhem, T., Torberg, A., Persson, H., Schalling, M., Hökfelt, T., and Magnusson, G., 1987, Structure and expression of the gene encoding the vasoactive intestinal peptide precursor, Proc. Natl. Acad. Sci. USA 84:605–609.PubMedCrossRefGoogle Scholar
  67. 67.
    Ishibara, T., Shigemoto, R., Mori, K., Takahashi, K., and Nagata, S., 1992, Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide, Neuron 8:811–819.CrossRefGoogle Scholar
  68. 68.
    Christophe, J., 1993, Type I receptors for PACAP (a neuropeptide even more important than VIP?), Biochim. Biophys. Acta 1154:183–199.PubMedCrossRefGoogle Scholar
  69. 69.
    Ottaway, C. A., Lewis, D. L., and Asa, S. L., 1987, Vasoactive intestinal peptide-containing nerves in Peyer’s patches, Brain Behav. Immun. 1:148–158.PubMedCrossRefGoogle Scholar
  70. 70.
    Ottaway, C. A., 1987, Selective effects of vasoactive intestinal peptide on the mitogenic response of murine T cells, Immunology 62:291–297.PubMedGoogle Scholar
  71. 71.
    Ottaway, C. A., and Greenberg, F. R., 1984, Interaction of vasoactive intestinal peptide with mouse lymphocytes: Specific binding and the modulation of mitogen responses, J. Immunol. 132:417–423.PubMedGoogle Scholar
  72. 72.
    Krco, C. J., Gores, A., and Go, V. L. W., 1986, Gastrointestinal regulatory peptides modulate in vitro immune reactions of mouse lymphoid cells, Clin. Immunol. Immuno-pathol 39:308–318.CrossRefGoogle Scholar
  73. 73.
    Blum, A. M., Mathew, R., Cook, G. A., Metwali, A., Felman, R., and Weinstock, J. V., 1992, Murine mucosal T cells have VIP receptors functionally distinct from those on intestinal epithelial cells, J. Neuroimmunol. 39:101–108.PubMedCrossRefGoogle Scholar
  74. 74.
    Elitsur, Y, and Luk, G. D., 1990, Gastrointestinal neuropeptides suppress human colonic lamina propria lymphocyte DNA synthesis, Peptides 11:879–884.PubMedCrossRefGoogle Scholar
  75. 75.
    Xu-Amano, J., Aicher, W. K., Taguchi, T., Kiyono, H., and McGhee, J. R., 1992, Selective induction of Th2 cells in murine Peyer’s patches by oral immunization, Int. Immunol. 4:433–445.PubMedCrossRefGoogle Scholar
  76. 76.
    Xu-Amano, J., Kiyono, H., Jackson, R., Staats, H. F., Fujihashi, K., Burrows, P. D., Elson, C. O., Pillai, S., and McGhee, J. R., 1993, Helper T cell subsets for immunoglobulin A responses: Oral immunization with tetanus toxoid and cholera toxin as adjuvant selectively induces Th2 cells in mucosa associated tissues, J. Exp. Med. 178:1309–1320.PubMedCrossRefGoogle Scholar
  77. 77.
    Jackson, R. J., Fujihashi, K., Xu-Amano, J., Kiyono, H., and McGhee, J. R., 1993, Optimizing oral vaccines: Induction of systemic and mucosal B cell and antibody responses to tetanus toxoid by use of cholera toxin as adjuvant, Infect. Immun. 61:4272–4279.PubMedGoogle Scholar
  78. 78.
    Xu-Amano, J., Fujihashi, K., Jackson, R., Kiyono, H., and McGhee, J. R., 1994, Helper Th1 and Th2 cell responses following mucosal or systemic immunization with cholera toxin, Vaccine 12:903–911.PubMedCrossRefGoogle Scholar
  79. 79.
    Ogra, P. L., and Karzon, D. T., 1969, Distribution of poliovirus antibody in serum, nasopharynx, and alimentary tract following segmental immunization of lower alimentary tract with polio vaccine, J. Immunol. 102:1423–1430.PubMedGoogle Scholar
  80. 80.
    Bourguin, I., Chardes, T., and Bout, D., 1993, Oral immunization with Toxoplasma gondii antigens in association with cholera toxin induces enhanced protective and cell-mediated immunity in C57BL/6 mice, Infect. Immun. 61:2082–2088.PubMedGoogle Scholar
  81. 81.
    Fairweather, N. F., Chatfield, S. N., Makoff, A. J., Strugnell, R. A., Bester, J., Maskell, D. J., and Dougan, G., 1990, Oral vaccination of mice against tetanus by use of a live attenuated Salmonella carrier, Infect. Immun. 58:1323–1326.PubMedGoogle Scholar
  82. 82.
    Yang, D. M., Fairweather, N., Button, K. L., McMaster, W. R., Kahl, L. P., and Liew, F. Y., 1990, Oral Salmonella typhimurium (AroA) vaccine expressing a major leishmanial surface protein (gp63) preferentially induces T helper 1 cells and protective immunity against leishmaniasis, J. Immunol. 145:2281–2285.PubMedGoogle Scholar
  83. 83.
    Schodel, F., Milich, D. R., and Will, H., 1990, Hepatitis B virus nucleocapsid/pre-S2 fusion proteins expressed in attenuated Salmonella for oral vaccination, J. Immunol. 145:4317–4321.PubMedGoogle Scholar
  84. 84.
    Winner, L., Mack, J., Weltzin, R., Mekalanos, J. J., Kraehenbuhl, J. P., and Neutra, M. R., 1991, New model for analysis of mucosal immunity: Intestinal secretion of specific monoclonal immunoglobulin A from hybridoma tumors protects against Vibrio cholerae infection, Infect. Immun. 59:977–982.PubMedGoogle Scholar
  85. 85.
    Michetti, P., Mahan, M. J., Slauch, J. M., Mekalanos, J. J., and Neutra, M. R., 1992, Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium, Infect. Immun. 60:1786–1792.PubMedGoogle Scholar
  86. 86.
    Yap, K. L., Acta, G. L., and McKenzie, I. F. C., 1978, Transfer of specific cytotoxic T lymphocytes protects mice inoculated with influenza virus, Nature 273:238–239.PubMedCrossRefGoogle Scholar
  87. 87.
    Zinkernagel, R. M., and Doherty, P. C., 1979, MHC-restricted cytotoxic T cells: Studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness, Adv. Immunol. 27:51–177.PubMedCrossRefGoogle Scholar
  88. 88.
    Marrack, P., and Kappler, J., 1987, The T cell receptor, Science 238:1073–1079.PubMedCrossRefGoogle Scholar
  89. 89.
    Ennis, F. A., Yi-Hua, Q., and Schild, G. C., 1982, Antibody and cytotoxic T lymphocyte responses of humans to live and inactivated influenza vaccines, J. Gen. Virol. 58:273–281.PubMedCrossRefGoogle Scholar
  90. 90.
    McMichael, A. J., and Askonas, B., 1978, Influenza virus-specific cytotoxic T cell in man: Induction and properties of the cytotoxic cell, Eur. J. Immunol. 8:705–711.PubMedCrossRefGoogle Scholar
  91. 91.
    Davies, M. D. J., and Parrott, D. M. W., 1981, Cytotoxic T cells in small intestine epithelial, lamina propria and lung lymphocytes, Immunology 44:367–371.PubMedGoogle Scholar
  92. 92.
    Nauss, K. M., Pavlina, T. M., Kumar, V., and Newberne, P. M., 1984, Functional characteristics of lymphocytes isolated from the rat large intestine: Response to T-cell mitogens and natural killer cell activity, Gastroenterology 86:468–475.PubMedGoogle Scholar
  93. 93.
    Ernst, P. B., Befus, A. D., and Bienenstock, J., 1985, Leukocytes in the intestinal epithelium: An unusual immunological compartment, Immunol. Today 6:50–55.CrossRefGoogle Scholar
  94. 94.
    Issekutz, T. B., 1984, The response of gut-associated T lymphocytes to intestinal viral immunization, J. Immunol. 133:2955–2960.PubMedGoogle Scholar
  95. 95.
    London, S. D., Rubin, D. H., and Cebra, J. J., 1987, Gut mucosal immunization with reovirus serotype l/L stimulated virus-specific cytotoxic T cell precursors as well as IgA memory cells in Peyer’s patches, J. Exp. Med. 165:830–847.PubMedCrossRefGoogle Scholar
  96. 96.
    Offit, P. A., and Dudzik, K. I., 1989, Rotavirus-specific cytotoxic T lymphocytes appear at the intestinal mucosal surface after rotavirus infection, J. Virol. 63:3507–3512.PubMedGoogle Scholar
  97. 97.
    Podack, E. R., and Kupef, A., 1991, T cell effector functions: Mechanisms for delivery of cytotoxicity and help, Annu. Rev. Cell Biol. 7:479–504.PubMedCrossRefGoogle Scholar
  98. 98.
    Young, L. H. Y., Klavinskis, L. S. D., Oldstone, M. B. A., and Young, J. D. E., 1989, In vivo expression of perform by CD8+ lymphocytes during an acute viral infection, J. Exp. Med. 169:2159–2171.PubMedCrossRefGoogle Scholar
  99. 99.
    Liu, C.-C., Steffen, M., King, F., and Young, J. D. E., 1987, Identification, isolation and characterization of a novel cytotoxin in murine cytolytic lymphocytes, Cell 51:393–403.PubMedCrossRefGoogle Scholar
  100. 100.
    Trenn, G., Takayama, H., and Sitkovsky, M. V., 1987, Exocytosis of cytolytic granules may not be required for target cell lysis by cytotoxic T-lymphocytes, Nature 330:72–74.PubMedCrossRefGoogle Scholar
  101. 101.
    Taylor, P. M., Wraith, D. C., and Askonas, B. A., 1985, Control of immune interferon release by cytotoxic T-cell clones specific for influenza, Immunology 54:607–614.PubMedGoogle Scholar
  102. 102.
    Yamada, Y K., Meager, A., Yamada, A., and Ennis, F. A., 1986, Human interferon alpha and gamma production by lymphocytes during the generation of influenza virus-specific cytotoxic T lymphocytes, J. Gen. Virol 67:2325–2334.PubMedCrossRefGoogle Scholar
  103. 103.
    Wong, G. H., Bartlett, P. E., Lewis Clark, I., and McKimm-Breschkin, J.-L., 1985, Interferon-gamma induces the expression of H-2 and la antigens on brain cells, J. Neuroimmunol. 7:255–278.PubMedCrossRefGoogle Scholar
  104. 104.
    Nelson, P. J., Geller, R. L., Podack, E., and Bach, F. H., 1992, Molecular events in late stage of T-cell functional maturation, Scand. J. Immunol. 35:311–320.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • David W. Pascual
    • 1
  • Hiroshi Kiyono
    • 2
    • 3
  • Jerry R. McGhee
    • 2
    • 3
  1. 1.Veterinary Molecular BiologyMontana State UniversityBozemanUSA
  2. 2.The Immunobiology Vaccine Center, Departments of Oral Biology and MicrobiologyUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.Department of Mucosal Immunology, Research Institute for Microbial DiseaseOsaka UniversityOsaka 565Japan

Personalised recommendations