A Global Description of Phase Equilibria in the Quaternary Microemulsion System: Water-Dodecane-Pentanol-Sodium Dodecylsulfate

  • A. M. Bellocq
  • D. Roux
Part of the Ettore Majorana International Science Series book series (EMISS, volume 41)


The knowledge of the phase diagram of a multicomponent system is a fundamental necessary step for the understanding of the physics of the system. It has been clearly and intensively shown by Ekwall and coworkers[1] that phase equilibria in multicomponent aqueous mixtures of amphiphilic molecules can be richly diverse and intricate. Due to their considerable potential for aggregation the surfactant solutions show a multiplicity of structures (bilayers, cylinders, spherical micelles) which can organize and produce a great variety of isotropic and mesomorphic phases. The phase diagrams of several water-surfactant-alcohol and watersurfactant-oil mixtures have been investigated in detail [1–6]. They display a rich variety of phases and also complex multiphase regions where two or three liquid isotropic and mesomorphic phases are in equilibrium. As we will see later in this paper, the phase diagrams of the quaternary mixtures which give rise to microemulsion phases are not qualitatively different from those of ternary mixtures described by P. Ekwall. One still encounters ordered phases but their extent is considerably reduced. Generally mesomorphic regions are replaced over a broad domain of water and oil concentrations by an isotropic liquid microemulsion phase where no long range order occurs.


Phase Diagram Triple Point Ternary Mixture Liquid Crystalline Phase Lamellar Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Ekwall, in Advances in Liquid Crystals, Vol. 1, G.H. Brown, Ed. Acad. Press New York, 1975, p. 1.Google Scholar
  2. 2.
    P. A. Winsor, Chem. Rev., 68, 1 (1968).Google Scholar
  3. 3.
    K. Fontell, in Liquid Crystals and Plastic Crystals, Vol. 2, G. W. Gray, and P. A. Winsor, Eds. Ellis Howood, Chichester, 1984, p. 80.Google Scholar
  4. 4.
    G. J. T., Tiddy, Physics Reports, 57, 1 (1980).Google Scholar
  5. 5.
    G. J. T. Tiddy and M. F. Walsh, in Aggregation Process in Solution, Vol. 28, E. Wyn Jones and J. Gornally, Ed. Elsevier Sci. Pub. Co., 1983, p. 151.Google Scholar
  6. 6.
    J. Charvolin, in Colloides et Interfaces, Editions de Physique, 1983, p. 33.Google Scholar
  7. 7.
    G. Gillberg, H. Lehtinen, and S. Friberg, J. Coll. Interface Sci., 33, 40 (1970).Google Scholar
  8. 8.
    S. E. Ahmad, K. Shinoda, S. Friberg, J. Coll. Interface Sci., 47, 32 (1974).Google Scholar
  9. 9.
    S. Friberg and I. Burasczenska in Micellization, Solubilization and Microemulsions, Vol. 2, K. L. Mittal, Plenum Press, 1977, 791.Google Scholar
  10. 10.
    R. N. Healy, R. L. Reed, D. G. Stenmark, S.P.E. Journal, 16, 147 (1976).Google Scholar
  11. 11.
    Improved oil recovery by surfactant and polymer flooding, Eds. D. 0. Shah and R. S. Schechter, Acad. Press, N.Y., 1977.Google Scholar
  12. 12.
    A. M. Bellocq, J. Biais, P. Bothorel, B. Clin, G. Fourche, P. Lalanne, B. Lemaire, B. Lemanceau, D. Roux. Adv. Coll. Interface Sci., 20, 167 (1984).Google Scholar
  13. 13.
    A. M. Bellocq, D. Bourbon, and B. Lemanceau, L. Coll. Int. Sci., 79, 419 (1981).Google Scholar
  14. 14.
    J. C. Lang, in Physics of Amphiphiles, Micelles, Vesicles and Micro-emulsions, V. Degiorgio and M. Corti, Ed. North Holland, Amsterdam, 1985, p. 336.Google Scholar
  15. M. Kahlweit, E. Lessner and R. Strey, J. Phys. Chem., 89, 163 (1985).Google Scholar
  16. R. B. Griffiths and J. C. Wheeler, Phys. Rev. A2, 1047 (1970).Google Scholar
  17. 17.
    D. Roux and A. M. Bellocq, Phys. Rev. Lett., 52, 1895 (1984).ADSCrossRefGoogle Scholar
  18. 18.
    D. Roux and A. M. Bellocq, in Surfactants in Solution, K. L. Mittal, P. Bothorel, Eds. Plenum Press, New York, (1987), 6, p. 1247.Google Scholar
  19. 19.
    A. M. Bellocq and D. Roux, in Microemulsions, Ed. by S. Friberg, and P. Bothorel, CRC Press, in press.Google Scholar
  20. 20.
    I. Prigogine, and R. Defay, Thermodynamique Chimique, Liége, 1950.Google Scholar
  21. 21.
    J. A. Zollweg, J. Chem. Phys., 55, 1430 (1971).Google Scholar
  22. 22.
    D. Roux and A. M. Bellocq, in Statistical Thermodynamics of Micelles and Microemulsions, Ed. by S. H. Chen, Springer-Verlag, in press.Google Scholar
  23. 23.
    J. C. Lang and R. D. Morgan, J. Chem. Phys., 73, 5849 (1980).Google Scholar
  24. 24.
    M. Dvolaitzky, J. M. Dimiglio, R. Ober and C. Taupin, J. Phys. Lett., 44, L229 (1983).Google Scholar
  25. 25.
    M. Kahlweit, J. Coll. Interface Sci., 90, 197 (1982).Google Scholar
  26. 26.
    P. K. Kilpatrick, L. E. Scriven, and H. T. Davis, SPE J. 11209 (1982).Google Scholar
  27. 27.
    D. Roux, A. M. Bellocq and P. Bothorel, in Surfactants in Solution, Ed. by K. L. Mittal and B. Lindman, Plenum Press, 3, 1984, 1843.Google Scholar
  28. 28.
    G. Guerin, Thesis Bordeaux 1985.Google Scholar
  29. 29.
    D. Roux and A. M. Bellocq, in Physics of Amphiphiles. Micelles, Vesicles and Microemulsions, V. Degiorgio and M. Corti, Ed. North Holland, Amsterdam, 1985, p. 842.Google Scholar
  30. 30.
    A. M. Bellocq, P. Honorat and D. Roux, in Surfactants in Solution, K. L. Mittal, P. Bothorel, Eds. Plenum Press, New York, (1987), 6, p. 126.Google Scholar
  31. 31.
    A. M. Bellocq, P. Honorat and D. Roux, J. Phys., 46, 743 (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • A. M. Bellocq
    • 1
  • D. Roux
    • 1
  1. 1.Centre de Recherche Paul Pascal (CNRS)GRECO “Microemulsions” du CNRS-Domaine UniversitaireTalence CedexFrance

Personalised recommendations