Structural Modifications Induced by External Agents on Multilamellar Liposomes

  • P. Mariani
  • F. Rustichelli
Part of the Ettore Majorana International Science Series book series (EMISS, volume 41)


Phospholipids, a principal component of natural membranes together with proteins, are molecules with a polar head-group, charged or zwitterionic, and two hydrocarbon chains. When placed into an aqueous medium, they form a variety of lyotropic structures as a function of water content and temperature, which are disordered at atomic level and yet display a high degree of long range organization[1]. In particular, multilamellar liposomes, layer lattices of alternating and closed bimolecular lipid sheets intercalated by aqueous spaces, have a strong similarity with the lipid bilayers of biological membranes and can be regarded as models or prototypes of living cells[2]. Information about functions and properties of biomembranes can be obtained by studying such relatively simple structures.


Benzyl Alcohol Acyl Chain Multilamellar Liposome DPPC Liposome Packing Periodicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Luzzati, X-ray diffraction studies of lipid-water systems, in: “Biological Membrane”, D. Chapman Ed. Academic Press, London (1968).Google Scholar
  2. 2.
    C. Tanford, Monolayers, micelles, lipid vescicles and biomembranes, Presented at: International School of Physics “E. Fermi” XC Course, Physics of Amphiphiles: Micelles, Vesiscles and Microemulsions Varenne (1983).Google Scholar
  3. 3.
    M. K. Jain and N.M.Wu, Effect of Small molecules on the dipalmitoyl lecithin liposomal bilayer. III, Phase transition in Lipid Bilayer, J. Membrane Biol. 34: 157 (1977).Google Scholar
  4. 4.
    A. W. Eliasz, D. Chapman and D. F. Ewing, Phospholipid phase transition. Effects on n-alcohols, n-monocarboxylic acids, phenylalkyl alcohols and quaternary ammonium compounds, Biochim. Biophys. Acta 448: 220 (1976).Google Scholar
  5. 5.
    D. Chapman, J. C. Gomez-Fernandez and F. M. Goni, Intrinsic protein-lipid interactions, FEBS Letters 98: 211 (1979).CrossRefGoogle Scholar
  6. 6.
    B. P. Cater, D. Chapman, S. M. Hawes and J. Savicle, Lipid phase Transitions and drug interactions, Biochim. Biophys. Acta 363: 54 (1974).Google Scholar
  7. 7.
    J. C. Edwards, D. Chapman, W. A. Cramp and M. B. Yatvin, The effect of ionizing radiation on biomembrane structure and function, Prog. Biophys. Molec. Biol. 43: 71 (1984).Google Scholar
  8. 8.
    D. Chapman and J. A. Hayward, New biophysical techniques and their application to the study of membranes, Biochem. I. 228: 281 (1985).Google Scholar
  9. 9.
    J. Stumpel, H.HIBL and A. Nicksch, X-ray analysis and calorimetry on phosphatidylcholine model membranes: the influence of length and position of acyl chains upon structure phase behaviour, Biochim. Biophys. Acta 727: 246 (1983).Google Scholar
  10. 10.
    A. Tardieu, V. Luzzati and F. C. Reman, Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin water phases, J. Mol. Biol. 75: 711 (1973).Google Scholar
  11. 11.
    M. J. Janik, D. M. Small and G. G. Shipley, Nature of the thermal pretransition of synthetic phospholipids: dimyristoyl-and dipalmitoyllecithin, Biochemistry 15: 4575 (1976).Google Scholar
  12. 12.
    J. Ruocco and G. G. Shipley, Characterization of the sub-transition of hydrated dipalmitoyl phosphatidylcholine bilayers: X-ray diffraction study, Biochim. Biophys. Acta. 684: 59 (1982).Google Scholar
  13. 13.
    A. Wattes, K. Harlow and D. Marsh, Charge-induced tilt in ordered-phase phosphatidylclycerol bilayers: Evidence from x-ray diffraction, Biochim. Biophys. Acta. 645: 91 (1981).Google Scholar
  14. 14.
    F. Reiss-Husson, The structure of liquid crystalline phases of different phospholipids, monoglicerides, and sphingolipids, anhydrous and in the presence of water, J. Mol. Biol. 25: 363 (1967).Google Scholar
  15. 15.
    T. Alper, The role of membrane damage in radiation induced cell death, Adv. Exp. Med. Biol. 84: 139 (1977).Google Scholar
  16. 16.
    G. Albertini, E. Fanelli, L. Guidoni, F. Ianzini, P. Mariani, F. Rustichelli and V. Viti, X-ray diffractometry and calorimetry studies of structural modifications induced by y-irradiation in phosphatidylcholine multilamellar liposomes, Int. J. Radiat. Biol. 48: 785 (1985).Google Scholar
  17. 17.
    G.Albertini, E. Fanelli, L. Guidoni, F. Ianzini, P. Mariani, F. Rustichelli and V. Viti, X-ray diffractometry and calorimetry studies of structural modifications induced by x-ray radiation on distearoylphosphatidylcholine liposomes, Int. J. Radiation Biol. 52:145 (1987).Google Scholar
  18. 18.
    G. Erriu, M. Ladu, and G. Meleddu, Modifications induced on phosphatidylcholine multilayer by Co-60 y-rays, Biophys. J. 35: 799 (1981).CrossRefGoogle Scholar
  19. 19.
    L. Guidoni, F. Ianzini, P. L. Indovina, and V. Viti, 1H and 2H NMR studies of water in y-irradiated phosphatidylcholine multilamellar liposomes, Int. J. Radiat. Biol. 48: 117 (1985).Google Scholar
  20. 20.
    F. Ianzini, L. Guidoni, P. L. Indovina, V. Viti, L. Erriu, S. Onnis, and P. Randaccio, Gamma-irradiation effects on phosphatidylcholine multilayers liposomes: calorimetric, NMR and spectrofluorimetric studies Radiat. Research 98: 154 (1984).Google Scholar
  21. 21.
    A. G. Lee, Model for action of local anaesthetics, Nature 262: 545 (1976).Google Scholar
  22. 22.
    D. A. Haydon, B. M. Hendry, S. R. Levinson and J. Requena, Anaesthesia by the n-alkanes: a comparative study of nerve impulse blockage and the properties of black lipid bilayer membranes, Biochim. Biophys. Acta, 470: 17 (1977).Google Scholar
  23. 23.
    R. G. Ashcroff, H. G. L. Coster and J. R. Smith, The molecular organization of bimolecular lipid membranes: the effect of benzyl alcohol on the structure, Biochim. Biophys. Acta 469: 13 (1977).Google Scholar
  24. 24.
    L. Ebihara, J. E. Hall, R. C. MacDonald, T. J. McIntosh and S. A. Simon, Effect of benzyl alcohol on lipid bilayers: a comparison of bilayer systems, Biophys. J. 28: 185 (1979).Google Scholar
  25. 25.
    J. Leyes and R. Latorre, Effect of anesthetics benzyl alcohol and chloroform on bilayers made from monolayers, Biophys. J., 28: 259 (1979).Google Scholar
  26. 26.
    T. Shibata, Y. Sugiura and S. Iwaxanagi, Effects of benzyl alcohol on phosphatidylcholine lamellar phase with different water contents, Chem. Phys. Lipids 31: 105 (1982).Google Scholar
  27. 27.
    G. Albertini, G. Curatola, P. Mariani, F. Rustichelli, and G. Zolese, Lipid aminoacid interaction: a study of tryptophane effects on dipalmitoylphosphatidylcholinemultilamellar liposomes, to be submitted to Chemistry and Physics of Lipids.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • P. Mariani
    • 1
  • F. Rustichelli
    • 1
  1. 1.Istituto di Fisica Medica, Facoltà di Medicina e ChirurgiaUniversità di AnconaItaly

Personalised recommendations