Advertisement

Selection of Forging Conditions for Forging a Given Component

Chapter
  • 2.2k Downloads
Part of the Springer Series in Advanced Manufacturing book series (SSAM)

Keywords

Analytic Hierarchy Process Material Processing Technology Analytic Hierarchy Process Method Grain Flow Heating Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banaszek G, Szota P (2005) A comprehensive numerical analysis of the effect of relative feed during the operation of stretch forging of large ingots in profiled anvils. Journal of Materials Processing Technology 169:437–444CrossRefGoogle Scholar
  2. Bariani PF, Bruschi S, Negro TD (2004) Integrating physical and numerical simulation techniques to design the hot forging process of stainless steel turbine blades. International Journal of Machine Tools and Manufacture 44:945–951CrossRefGoogle Scholar
  3. Biglari FR, O’Dowd NP, Fenner RT (1998) Optimum design of forging dies using fuzzy logic in conjunction with the backward deformation method. International Journal of Machine Tools and Manufacture 38:981–1000CrossRefGoogle Scholar
  4. Castro CF, António CAC, Sousa LC (2004) Optimisation of shape and process parameters in metal forging using genetic algorithms. Journal of Materials Processing Technology 146:356–364CrossRefGoogle Scholar
  5. Chastel Y, Caillet N, Bouchard PO (2006) Quantitative analysis of the impact of forging operations on fatigue properties of steel components. Journal of Materials Processing Technology 177:202–205CrossRefGoogle Scholar
  6. Chen X, Balendra R, Qin Y (2004) A new approach for the optimization of the shrink-fitting of cold-forging dies. Journal of Materials Processing Technology 145:215–223CrossRefGoogle Scholar
  7. Choi SK, Chun MS, Tyne CJV, Moon YH (2006) Optimization of open die forging of round shapes using FEM analysis. Journal of Materials Processing Technology 172:88–95CrossRefGoogle Scholar
  8. Duan X, Sheppard T (2002) Shape optimization using FEA software: a V-shaped anvil as an example. Journal of Materials Processing Technology 120:426–431CrossRefGoogle Scholar
  9. Duggirala R, Shivpuri R, Kini S, Ghosh S, Roy S (1994) Computer aided approach for design and optimization of cold forging sequences for automotive parts. Journal of Materials Processing Technology 46:185–198CrossRefGoogle Scholar
  10. Dyja H, Banaszek G, Mróz S, Berski S (2004) Modelling of shape anvils in free hot forging of long products. Journal of Materials Processing Technology 157–158:131–137CrossRefGoogle Scholar
  11. Forcellese A, Gabrielli F, Ruffini R (1996) Application of a decision-making method in the forging condition optimization for manufacturing automotive components. Journal of Materials Processing Technology 60:125–132CrossRefGoogle Scholar
  12. Jugo EF, Anza J (1994) Industrial applications of numerical simulation to the design and optimization of forging. Journal of Materials Processing Technology 45:81–86CrossRefGoogle Scholar
  13. Khoury I, Laurence GM, Lafon P, Labergére C (2006) Towards an optimization of forging processes using geometric parameters. Journal of Materials Processing Technology 177:224–227CrossRefGoogle Scholar
  14. Liou JH, Jang DY (1997) Forging parameter optimization considering stress distributions in products through FEM analysis and robust design methodology. International Journal of Machine Tools and Manufacture 37:775–782CrossRefGoogle Scholar
  15. Mulyadi M, Rist MA, Edwards L, Brooks JW (2006) Parameter optimization in constitutive equations for hot forging. Journal of Materials Processing Technology 177:311–314CrossRefGoogle Scholar
  16. Ou H, Armstrong CG, Price MA (2003) Die shape optimization in forging of aerofoil sections. Journal of Materials Processing Technology 132:21–27CrossRefGoogle Scholar
  17. Ou H, Lan J, Armstrong CG, Price MA (2004) An FE simulation and optimization approach for the forging of aeroengine components. Journal of Materials Processing Technology 151:208–216CrossRefGoogle Scholar
  18. Park JO, Kim KJ, Kang DY, Lee YS, Kim YH (2001) An experimental study on the optimization of powder forging process parameters for an aluminum-alloy piston. Journal of Materials Processing Technology 113:486–492CrossRefGoogle Scholar
  19. Picart P, Ghouati O, Gelin JC (1998) Optimization of metal forming process parameters with damage minimization. Journal of Materials Processing Technology 80–81:597–601CrossRefGoogle Scholar
  20. Poursina M, Parvizian J, Antonio CAC (2006) Optimum pre-form dies in two-stage forging. Journal of Materials Processing Technology 174:325–333CrossRefGoogle Scholar
  21. Roy S, Ghosh S, Shivpuri R (1997) A new approach to optimal design of multistage metal forming processes with micro genetic algorithms. International Journal of Machine Tools and Manufacture 37:29–44CrossRefGoogle Scholar
  22. Sousa LC, Castro CF, António CAC, Santos AD (2002) Inverse methods in design of industrial forging processes. Journal of Materials Processing Technology 128:266–273CrossRefGoogle Scholar
  23. Szyndler R, Klimkiewicz B (1992) Design of the open-die elongation process using optimization technique. Journal of Materials Processing Technology 34:157–162CrossRefGoogle Scholar
  24. Thiyagarajan N, Grandhi RV (2005) Multi-level design process for 3-D perform shape optimization in metal forming. Journal of Materials Processing Technology 170:421–429CrossRefGoogle Scholar
  25. Vijian P, Arunachalam VP (2006) Optimization of squeeze cast parameters of LM6 aluminium alloy for surface roughness using Taguchi method. Journal of Materials Processing Technology 180:161–166CrossRefGoogle Scholar
  26. Zhao G, Wcorrect E, Grandhi RV (1997) Sensitivity analysis based preform die shape design for net-shape forging. International Journal of Machine Tools and Manufacture 37:1251–1271CrossRefGoogle Scholar
  27. Zhao G, Ma X, Zhao X, Grandhi RV (2004) Studies on optimization of metal forming processes using sensitivity analysis methods. Journal of Materials Processing Technology 147:217–228CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2007

Personalised recommendations