Advertisement

The Cognitive Factory

  • M. F. Zaeh
  • M. Beetz
  • K. Shea
  • G. Reinhart
  • K. Bender
  • C. Lau
  • M. Ostgathe
  • W. Vogl
  • M. Wiesbeck
  • M. Engelhard
  • C. Ertelt
  • T. Rühr
  • M. Friedrich
  • S. Herle
Chapter
Part of the Springer Series in Advanced Manufacturing book series (SSAM)

Abstract

The automation of processes and production steps is one of the key factors for a cost effective production. Fully automated production systems can reach lead times and quality levels exceeding by far those of human workers. These systems are widely spread in industries of mass production where the efforts needed for setup and programming are amortized by the large number of manufactured products. In the production of prototypes or small lot sizes, however, human workers with their problem solving abilities, dexterity and cognitive capabilities are still the single way to provide the required flexibility, adaptability and reliability. The reason is that humans have brains, computational mechanisms that are capable of acting competently under uncertainty, reliably handling unpredicted events and situations and quickly adapting to changing tasks, capabilities, and environments. The realization of comparable cognitive capabilities in technical systems, therefore, bears an immense potential for the creation of industrial automation systems that are able to overcome today’s boundaries. This chapter presents a new paradigm of production engineering research and outlines the way to reach the Cognitive Factory, where machines and processes are equipped with cognitive capabilities in order to allow them to assess and increase their scope of operation autonomously.

Keywords

Cognitive Factory Cognitive Capability Assembly Plan Assembly Sequence Planning Shape Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. .Ahn S, Sundararajan V, Smith C, Kannan B, D’Souza R, Sun G, Mohole A, Wright P, Kim J, McMains S, Smith J & Sequin C 2001, ’CyberCut: An Internet Based CAD/CAM System’, Journal of Computing and Information Science in Engineering, vol. 1, no. 1, pp. 52-9CrossRefGoogle Scholar
  2. Beetz M., Buss M. and Wollherr D., 2007, Cognitive Technical Systems~--—What Is the Role of Artificial Intelligence? In: Proceedings of the 30th German Conference on Artificial Intelligence (KI-2007)Google Scholar
  3. Bongaerts L, Monostori L, McFarlane D & Kadar B 2000, ’Hierarchy in distributed shop floor control’, Computers in Industry, vol. 43, no. 2, pp. 123-37CrossRefGoogle Scholar
  4. Bonneville F., Perrard C. and Henrioud J.M., 1995, A genetic algorithm to generate and evaluate assembly plans, In: Proceedings of the Symposium on Emerging Technologies and Factory AutomationGoogle Scholar
  5. Brachman R 2002, ’Systems That Know What They’re Doing’, IEE Intelligent Systems, vol. 17, no. 6, pp. 67-71CrossRefGoogle Scholar
  6. Brown KN, McMahon CA & Sims Williams JH 1995, ’Features, aka the semantics of a formal language of manufacturing’, Research in Engineering Design, vol. 7, no. 3, pp. 151-72CrossRefGoogle Scholar
  7. Cao T & Sanderson AC 1995, ’Task sequence planning using fuzzy Petri nets’, Systems, Man and Cybernetics, IEEE Transactions on, vol. 25, no. 5, pp. 755-68CrossRefGoogle Scholar
  8. Corney J, Hayes C, Sundararajan V & Wright P 2005, ’The CAD/CAM Interface: A 25-Year Retrospective’, Journal of Computing and Information Science in Engineering, vol. 5, no. 3, pp. 188-97CrossRefGoogle Scholar
  9. Dini G, Failli F, Lazzerini B & Marcelloni F 1999, ’Generation of Optimized Assembly Sequences Using Genetic Algorithms’, Annals of the CIRP, vol. 48, no. 1, pp. 17-20CrossRefGoogle Scholar
  10. Feldmann K. and Rottbauer H., 1999, Electronically Network Assembly Systems for Global Manufacturing, In: Proceedings of the 15th International Conference on Computer-Aided Production EngineeringGoogle Scholar
  11. Gou L., Hasegawa T., Luh P.B., Tamura S. and Oblak J.M., 1994, Holonic Planning and Scheduling for a Robotic Assembly Testbed, In: Proceedings of the Fourth International Conference on Computer Integrated Manufacturing and Automation TechnologyGoogle Scholar
  12. Hoc J-M 2001, ’Towards a cognitive approach to human-machine cooperation in dynamic situations’, International Journal of Human-Computer Studies, vol. 54, no. 4, pp. 509-40CrossRefGoogle Scholar
  13. Hollnagel E. and Cacciabue P.C., 1999, Cognition, Technology & Work: An Introduction, Cognition, Technology & Work, No. 1, pp 1--6Google Scholar
  14. Homem de Mello LS & Sanderson AC 1991, ’A correct and complete algorithm for the generation of mechanical assembly sequences’, Robotics and Automation, IEEE Transactions on, vol. 7, no. 2, pp. 228-40CrossRefGoogle Scholar
  15. Kádár B, Monostori L & Szelke E 1998, ’An object-oriented framework for developing distributed manufacturing architectures’, Journal of Intelligent Manufacturing, vol. 9, no. 2, pp. 173-9CrossRefGoogle Scholar
  16. Koestler A 1967, The ghost in the machine, Hutchinson, LondonGoogle Scholar
  17. Koren Y, Heisel U, Jovane F, Moriwaki T, Pritschow G, Ulsoy G & Van Brussel H 1999, ’Reconfigurable Manufacturing Systems’, Annals of the CIRP, vol. 48, no. 2, pp. 527-40CrossRefGoogle Scholar
  18. Laperrière L & ElMaraghy HA 1996, ’GAPP: A Generative Assembly Process Planner’, Journal of Manufacturing Systems, vol. 15, no. 4, pp. 282-93CrossRefGoogle Scholar
  19. Lastra JLM & Delamer M 2006, ’Semantic web services in factory automation: fundamental insights and research roadmap’, Industrial Informatics, IEEE Transactions on, vol. 2, no. 1, pp. 1-11CrossRefGoogle Scholar
  20. Leitao P & Restivo F 2006, ’ADACOR: A holonic architecture for agile and adaptive manufacturing control’, Computers in Industry, vol. 57, no. 2, pp. 121-30CrossRefGoogle Scholar
  21. Márkus A, Kis Váncza T & Monostori L 1996, ’A Market Approach to Holonic Manufacturing’, Annals of the CIRP, vol. 45, no. 1, pp. 433-6CrossRefGoogle Scholar
  22. Martin D, Paolucci M, McIrlaith S, Burstein M, McDermott D, McGuiness D, Parsia B, Payne T, Sabou M, Solanski M, Srinivasan N & Sycara K 2005, ’Bringing Semantics to Web Services: The OWL-S Approach’, in J Cordoso & A Sheth (eds), Semantic Web Services and Web Process Composition, Springer, BerlinGoogle Scholar
  23. Mataric MJ 1998, ’Behavior-based robotics as tool for synthesis of artificial behavior and analysis of natural behavior’, Trends in Cognitive Sciences, vol. 2, no. 3, pp. 82-7CrossRefGoogle Scholar
  24. McFarlane D.C., 2002, Auto ID Based Control Systems~--~An Overview, In: Proceedings of the 2002 IEEE International Conference on Systems, Man and CyberneticsGoogle Scholar
  25. Monostori L, Váncza J & Kumara SRT 2006, ’Agent-Based Systems for Manufacturing’, Annals of the CIRP, vol. 55, no. 2, pp. 697-719CrossRefGoogle Scholar
  26. Moore KE & Gupta SM 1996, ’Petri net models of flexible and automated manufacturing systems: a survey.’ International Journal of Production Research, vol. 34, no. 11, p. 3001zbMATHCrossRefGoogle Scholar
  27. Mueller A., Kirsch A. and Beetz M., 2007, Transformational Planning for Everyday Activity, In: Proceedings of the 17th International Conference on Automated Planning and Scheduling (ICAPS’07)Google Scholar
  28. Pan C, Smith SS & Smith GC 2006, ’Automatic assembly sequence planning from STEP CAD files’, International Journal of Computer Integrated Manufacturing, vol. 19, no. 8, pp. 775-83CrossRefGoogle Scholar
  29. Putzer H & Onken R 2003, ’COSA - A generic cognitive system architecture based on a cognitive model of human behavior’, Cognition , Technology & Work, vol. 5, no. 2, pp. 140-51CrossRefGoogle Scholar
  30. Rasmussen J, Pejtersen AM & Goodstein LP 1994, ’Cognitive Systems Engineering’, in Wiley Series in Systems Engineering, Wiley, New YorkGoogle Scholar
  31. Scholz-Reiter B & Freitag M 2007, ’Autonomous Processes in Assembly Systems’, Annals of the CIRP, vol. 56, no. 2, pp. 712-29CrossRefGoogle Scholar
  32. Shalin VL 2005, ’The roles of humans and computers in distributed planning for dynamic domains’, Cognition , Technology & Work, vol. 7, no. 3, pp. 198-211CrossRefGoogle Scholar
  33. Shea K., Engelhard M., Ertelt C. and Hoisl F., 2008, Bridging the gap between design and manufacturing through cognitive technical systems, In: Proceedings of the 7th International Symposium on Tools and Methods of Competitive EngineeringGoogle Scholar
  34. Stiny G 1980, ’Introduction to shape and shape grammars’, Environment and Planning B, vol. 7, no. 3, pp. 343-51CrossRefGoogle Scholar
  35. Strube G 1998, ’Modelling Motivation and Action Control in Cognitive Systems’, in U Schmid, J Krems & F Wysocki (eds), Mind Modelling: A Cognitive Science Approach to Reasoning, Learning and Discovery, Pabst Science Publishers, Berlin, pp. 89-108Google Scholar
  36. Stulp F. and Beetz M., 2005, Optimized Execution of Action Chains Using Learned Performance Models of Abstract Actions, In: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI)Google Scholar
  37. Stulp F., Isik M. and Beetz M., 2006, Implicit Coordination in Robotic Teams using Learned Prediction Models, In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)Google Scholar
  38. Teti R & Kumara SRT 1997, ’Intelligent Computing Methods for Manufacturing Systems’, Annals of the CIRP, vol. 46, no. 2, pp. 629-52CrossRefGoogle Scholar
  39. Tseng MM, Lei M & Su C 1997, ’A Collaborative Control System for Mass Customization Manufacturing’, Annals of the CIRP, vol. 46, no. 1, pp. 373-6CrossRefGoogle Scholar
  40. Ueda K, Hatono I, Fujii N & Vaario J 2000, ’Reinforcement Learning Approaches to Biological Manufacturing Systems’, Annals of the CIRP, vol. 49, no. 1, pp. 343-6CrossRefGoogle Scholar
  41. Ueda K, Hatono I, Fujii N & Vaario J 2001, ’Line-less Production System Using Self-Organization: A Case Study for BMS’, Annals of the CIRP, vol. 50, no. 1, pp. 319-22CrossRefGoogle Scholar
  42. Ueda K, Kito T & Fujii N 2006, ’Modeling Biological Manufacturing Systems with Bounded-Rational Agents’, Annals of the CIRP, vol. 55, no. 1, pp. 469-72CrossRefGoogle Scholar
  43. Ueda K, Vaario J & Ohkura K 1997, ’Modeling of Biological Manufacturing Systems for Dynamic Reconfiguration’, Annals of the CIRP, vol. 46, no. 1, pp. 343-6CrossRefGoogle Scholar
  44. Valckenaers P 2001, ’Editorial of the Special Issue on Holonic Manufacturing Systems’, Computers in Industry, vol. 43, no. 3, pp. 233-4CrossRefGoogle Scholar
  45. Valckenaers P., Bonneville F., Van Brussel H., Bongaerts L. and Wyns J., 1994, Results of the holonic control system benchmark at KU Leuven, In: Proceedings of the Fourth International Conference on Computer Integrated Manufacturing and Automation TechnologyGoogle Scholar
  46. Valckenaers P & Van Brussel H 2005, ’Holonic Manufacturing Execution Systems’, Annals of the CIRP, vol. 54, no. 1, pp. 427-30CrossRefGoogle Scholar
  47. Van Brussel H 1990, ’Planning and Scheduling of Assembly Systems’, Annals of the CIRP, vol. 39, no. 2, pp. 637-44CrossRefGoogle Scholar
  48. Van Brussel H, Wyns J, Valckenaers P, Bongaerts L & Peeters P 1998, ’Reference architecture for holonic manufacturing systems: PROSA’, Computers in Industry, vol. 37, no. 3, pp. 255-74CrossRefGoogle Scholar
  49. Wiendahl H-P & Ahrens V 1997, ’Agent-Based Control of Self-Organized Production Systems’, Annals of the CIRP, vol. 46, no. 1, pp. 365-8CrossRefGoogle Scholar
  50. Wiendahl H.-P., ElMaraghy H.A., Nyhuis P., Zäh M.F., Wiendahl H.-H., Duffie N. and Kolakowski M., 2007, Changeable Manufacturing: Classification, Design, Operation, Annals of the CIRP, 56/2Google Scholar
  51. Wong C.Y., McFarlane D., Ahmad Zaharudin A. and Agarwal V., 2002, The Intelligent Product Driven Supply Chain’, In: Proceedings of 2002 IEEE International Conference on Systems Man and CyberneticsGoogle Scholar
  52. Yuan X. and Gu Y. 1999, An integration of robot programming and sequence planning, In: Proceedings of the 1999 IEEE International Conference on Robotics and AutomationGoogle Scholar
  53. Zaeh M.F., Lau C., Wiesbeck M., Ostgathe M. and Vogl W., 2007, Towards the Cognitive Factory, In: Proceedings of the 2nd International Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV 2007)Google Scholar
  54. Zha XF & Lim SYE 2000, ’Assembly/disassembly task planning and simulation using expert Petri nets’, International Journal of Production Research, vol. 38, no. 15, pp. 3639-76zbMATHCrossRefGoogle Scholar

Copyright information

© Springer London 2009

Authors and Affiliations

  • M. F. Zaeh
    • 1
  • M. Beetz
    • 2
  • K. Shea
    • 3
  • G. Reinhart
    • 1
  • K. Bender
    • 4
  • C. Lau
    • 1
  • M. Ostgathe
    • 1
  • W. Vogl
    • 1
  • M. Wiesbeck
    • 1
  • M. Engelhard
    • 5
  • C. Ertelt
    • 5
  • T. Rühr
    • 6
  • M. Friedrich
    • 4
  • S. Herle
    • 7
  1. 1.Institute for Machine Tools and Industrial Management (iwb)Technical University of MunichGarchingGermany
  2. 2.Computer Science DepartmentTechnical University of MunichGarchingGermany
  3. 3.Mechanical Engineering Department, Institute of Product Development, Virtual Product DevelopmentTechnical University of MunichGarchingGermany
  4. 4.Institute of Information Technology in Mechanical Engineering (itm)Technical University of MunichGarchingGermany
  5. 5.Institute of Product DevelopmentTechnical University of MunichGarchingGermany
  6. 6.Computer Science Department, Chair IXTechnical University of MunichGarchingGermany
  7. 7.Technical University of Cluj-NapocaCluj-NapocaRomania

Personalised recommendations