Advertisement

Reconfigurable Machine Tools and Equipment

  • E. Abele
  • A. Wörn
Chapter
Part of the Springer Series in Advanced Manufacturing book series (SSAM)

Abstract

Reconfigurable Manufacturing Systems (RMS) are characterized by their quick adaptation to un-scheduled and un-predictable changes in production requirements. Trends, like the reduction of product life cycles, high products diversity at small lot sizes, as well as the fast development and implementation of new production technologies, call for new approaches in the design of flexible and life cycle overlappingmachine tools. The flexibility of RMS comprises changes in machining technology, production capacity, machine structure and function as well as in work piece spectrum and material property. The presented design of RMS is based on a construction kit principle, which enables it to adjust to new production requirements by substitution, addition or removal of machine systems. A new trend in the area of RMS is the complete machining of work pieces by using different machining technologies in one machine workspace (Abele, Wörn, 2004). This paper describes a method that considers the constructive particularities of the Reconfigurable Multitechnology Machine tool (RMM) taking flexibility aspects into consideration.

Keywords

Machine Tool Work Piece Production Facility Production Life Cycle Virtual Reality Modeling Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abele E., Liebeck, T., Wörn A., 2006, Measuring Flexibility in Investment Decisions for Manufacturing Systems, Annals of the CIRP 55/1, pp. 433-436CrossRefGoogle Scholar
  2. Abele, E.; Wörn, A., 2004, Chamäleon im Werkzeugmaschinenbau, (Chamaeleon in machine tool manufacture) ZWF, 99/4: 152-156Google Scholar
  3. Abele E., Wörn A., Stroh C., Elzenheimer J., 2005, Multi Machining Technology Integration in RMS, 3rd Conference on Reconfigurable Manufacturing, University of Michigan, Ann Arbor, MI, USAGoogle Scholar
  4. Abele E., Wörn A., Martin P., Klöpper R., 2006, Performance Evaluation Methods for Mechanical Interfaces in Reconfigurable Machine Tools, International Symposium on Flexible Automation, Osaka, JapanGoogle Scholar
  5. Chryssolouris, G., 1996, Flexibility and Its Measurements, Annals of the CIRP, 45/2: 581-587.CrossRefGoogle Scholar
  6. Denkena B., Drabow G., 2003, Modular Factory Structures: Increasing Manufacturing System Changeability, Proceedings of the 2nd CIRP International Conference on Reconfigurable Manufacturing, Ann Arbor, MI, USAGoogle Scholar
  7. Frick, W., 2003, Dreh-Bohr-Fräszentren – Multifunktionale Maschinen zur Komplettbearbeitung komplexer Werkstücke. (Turning drilling milling centers -- multi-functional machines to the complete processing of complex workpieces). Verlag Moderne Industrie, LandsbergGoogle Scholar
  8. Gu, P., Hashemian, M., Sosale, S., 1997, An integrated design methodology for life cycle engineering. Annals of CIRP, Vol. 46/1, pp. 71-74CrossRefGoogle Scholar
  9. Gu, P., Slevinsky, M., 2003, Mechanical Bus for Modular Product Design, Annals of the CIRP, 52/1: 113-116CrossRefGoogle Scholar
  10. Gunnar, E., Yxkull, A., Arnström, A., 1996, Modularity – the Basis for Product and Factory Reengineering, Annals of the CIRP, 45/1: 1-6CrossRefGoogle Scholar
  11. Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., Van Brussel, H., 1999, Reconfigurable Manufacturing Systems. Annals of the CIRP, 48/2, pp. 527-540CrossRefGoogle Scholar
  12. Metternich J., Würsching, B., 2000, Plattformkonzepte im Werkzeugmaschinenbau. (Platform concepts in the machine tool manufacture) wb Werkstatt und Betrieb, 133/6: 22-29Google Scholar
  13. Milberg, J.; 1992, Werkzeugmaschinen -- Grundlagen, Zerspantechnik, Dynamik, Baugruppen und Steuerungen. (Machine tools -- basics, chipping technology, dynamics, components and controls) Springer, BerlinGoogle Scholar
  14. Pahl, G., Beitz, W., 1996, Engineering Design -- A Systematic Approach, Springer, London, pp. 149-161Google Scholar
  15. Pouget, P.M., 2000, Ganzheitliches Konzept für rekonfigurierbare Produktionssysteme auf Basis autonomer Produktionsmodule. (Holistic concept for reconfigurable production systems on basis of autonomous production modules). VDI-Fortschrittsbericht. Vol. 537 VDI-Verlag, Düsseldorf, pp. 92-152Google Scholar
  16. Ropol, G., 1975, Systemtechnik – Grundlagen und Anwendung. (System engineering – basics and application). Carl Hanser, München, pp. 23-71Google Scholar
  17. Schäffer G., 1995, Systematische Integration adaptiver Produktionssysteme. (Systematic integration of adaptive production systems). Dissertation Technische Universität München, pp 42--44Google Scholar
  18. Schuh, G., Wemhöhner, N., Kampker, A., 2004, Lebenszyklusbewertung flexibler Produktionssysteme. (Life cycle evaluation of flexible production systems). wt Werkstatttechnik online, 94/4: 116-121Google Scholar
  19. Wiendahl H.-P., Heger C.L., 2003, Justifying Changeability~--~A Methodical Approach to Achieving Cost Effectiveness, 2nd CIRP International Conference on Reconfigurable Manufacturing, Ann Arbor, MI, USAGoogle Scholar

Copyright information

© Springer London 2009

Authors and Affiliations

  • E. Abele
    • 1
  • A. Wörn
    • 1
  1. 1.Institute of Production Management, Technology and Machine Tools (PTW)Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations