Selected Fuel Cells for Cogeneration CHP Processes

  • I. Pilatowsky
  • R.J. Romero
  • C.A. Isaza
  • S.A. Gamboa
  • P.J. Sebastian
  • W. Rivera
Part of the Green Energy and Technology book series (GREEN)


Before going into the details of cogeneration combined heat and power (CHP) processes, it is necessary to establish the operation principles and performance characteristics of the most common fuel cells for consideration in CHP processes. According to the phenomena governing the performance of fuel cells, it is worth noting that fuel cells are electrochemical energy conversion devices, where redox reactions occur spontaneously and the fuel and oxidant are consumed, and the electrochemical energy is transformed into electricity to produce work.

The thermodynamic reversible potentials and over-potential losses are the principal factors that control the net efficiency to convert chemical energy to electrical energy.

The fuel cell operating conditions depend on the electrochemical nature of the electricity production. Normally, activation over-potentials predominate at low current densities and they are also controlled by mass transport over-potentials at high current densities. Thus, the application of fuel cells in CHP processes implies a more detailed knowledge of the operation of every kind of fuel cell. Therefore, in this chapter, the fundamentals of the four typical fuel cells considered for CHP applications are explained, taking electrochemical operation principles and the consequent heat and electricity production into consideration. Generally, fuel cell classification is according to the type of electrolyte used and the operating temperatures.


Fuel Cell Proton Exchange Membrane Fuel Cell Direct Methanol Fuel Cell Membrane Electrode Assembly Bipolar Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appleby J (1984) In: Sarangapani S, Akridge JR, Schumm B (eds) Proceedings of the Workshop on the Electrochemistry of Carbon, The Electrochemical Society, Pennington, p 251Google Scholar
  2. Appleby AJ, Foulkes FR (1993) A fuel cell handbook, 2nd ed. Krieger, New YorkGoogle Scholar
  3. Büchi FN, Srinivasan S (1997) Operating proton exchange membrane fuel cells without external humidification of the reactant gases. Fundamental aspects. J Electrochem Soc 144(8): 2767–2772CrossRefGoogle Scholar
  4. Dohle H, Schmitz H, Bewer T, Mergel J, Stolten D (2002) Development of a compact 500 W class direct methanol fuel cell stack. J Power Sources 106:313–322CrossRefGoogle Scholar
  5. EG&G Services Parsons, Inc. (2000) Fuel Cell Handbook, 5th edn. Science Applications International Corporation. National Energy Technology LaboratoryGoogle Scholar
  6. Fuel Cells Bulletin (2008) UTC Power to launch improved, cheaper PAFC, 5:6–7Google Scholar
  7. Hamnett A, Kennedy BJ (1988) Bimetallic carbon supported anodes for the direct methanol air fuel cell. Electrochimica Acta 33:1613–1618CrossRefGoogle Scholar
  8. Ihrig HK (1960) 11th Annual Earthmoving Industry Conference, SAE Paper No. S-253Google Scholar
  9. Kinoshita K (1988) Carbon: electrochemical and physicochemical properties, Wiley Interscience, New YorkGoogle Scholar
  10. Koppel T (1999) Powering the future – the Ballard fuel cell and the race to change the world. Wiley, TorontoGoogle Scholar
  11. Kordesh KV (1971) Hydrogen-air/lead battery hybrid system for vehicle propulsion. J Electrochem Soc 118(5):812–817CrossRefGoogle Scholar
  12. Kordesch KV (1979) Survey of carbon and its role in phosphoric acid fuel cells. BNL 51418, prepared for Brookhaven National LaboratoryGoogle Scholar
  13. Kordesh KV, Simader G (1996) Fuel cells and their applications. VCH Verlagsgesellschaft, WeinheimCrossRefGoogle Scholar
  14. Larminie J, Dicks A (2003) Fuel cells systems explained, 2nd ed. UKGoogle Scholar
  15. McDougall A (1976) Fuel cells. Macmillan, LondonGoogle Scholar
  16. Murphy OJ, Cisar A, Clarke E (1998) Low cost light weight high power density PEM fuel cell stack. Electrochimica Acta 43(24):3829–3840CrossRefGoogle Scholar
  17. Rozière J, Jones D (2001) Recent progress in membranes for medium temperature fuel cell. In: Proceedings of the First European PEFC Forum (EFCF), pp 145–150Google Scholar
  18. Ruge M, Büchi FN (2001) Bipolar elements for PEM fuel cell stacks based on the mould to size process of carbon polymer mixtures. In: Proceedings of the First European PEFC Forum (EFCF), pp 299–308Google Scholar
  19. Srinivasan S (2006) Fuel cells. Springer, New YorkGoogle Scholar
  20. Valenzuela E, Gamboa SA, Sebastian PJ, Moreira J, Pantoja J, Ibañez G, Reyes A, Campillo B, Serna S (2009) Proton charge transport in Nafion nanochannels. J Nano Res 5:31–36CrossRefGoogle Scholar
  21. Warshay M, Prokopius PR (1990) The fuel cell in space: yesterday, today and tomorrow. J Power Sources 29:193–200CrossRefGoogle Scholar
  22. Zhang YY, Quing-Chun Y, Cao GY, Zhu XJ (2006) Research on a simulated 60 kW PEMFC cogeneration system for domestic application. J Zhejiang University Science A 7(3):450–457zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • I. Pilatowsky
    • 1
  • R.J. Romero
    • 2
  • C.A. Isaza
    • 3
  • S.A. Gamboa
    • 1
  • P.J. Sebastian
    • 1
  • W. Rivera
    • 1
  1. 1.Centro de Investigación en EnergíaUniversidad Nacional Autónoma de MéxicoTemixcoMexico
  2. 2.Centro de Investigación en Ingeniería y Ciencias AplicadasUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  3. 3.Instituto de Energía, Materiales y Medio Ambiente, Grupo de Energía y TermodinámicaUniversidad Pontificia BolivarianaMedellínColombia

Personalised recommendations