Sorption Refrigeration Systems

  • I. Pilatowsky
  • R.J. Romero
  • C.A. Isaza
  • S.A. Gamboa
  • P.J. Sebastian
  • W. Rivera
Part of the Green Energy and Technology book series (GREEN)


The knowledge of the basic principles of thermodynamics allows us to understand the conditions and necessary limitations in order to transform heat in work, transferring heat from a thermal source of high temperature to a smaller one. Thermal machines work under this principle, however, there are machines that consume work (external) and produce heat, that is to say in the inverse sense of a thermal machine operation according to the cycle of Carnot, this it is the case of a refrigerating machine. A particular case is refrigeration cycles based on the sorption process, which operate with thermal energy and consume their own work that they self-produce, this being the coupling among a thermal machine and a refrigeration machine. There are great variety of sorption refrigeration systems, in general those of absorption and adsorption cycles.

In this chapter, the introduction of the sorption theory, its applications to refrigeration thermodynamic cycles, and its efficiencies are presented and analyzed, as well as the different possibilities of work fluids for diverse applications, showing different examples of refrigeration cycles.


Heat Pump Refrigeration System Refrigeration Cycle Lithium Bromide Expansion Valve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aronson D (1969) Absorption refrigeration system. US Patent 3,478,530Google Scholar
  2. Albright LF, Doddy TC, Buclez PC et al (1960) Solubility of refrigerants 11,21 and 22 in organic solvents containing an oxygen atom. ASHRAE Trans 66:423Google Scholar
  3. Albright LF, Shannon PT, Terrier F et al (1962) Solubility of chlorofluoro-methanes in nonvolatile polar organic solvents. AIChE J 8(5):668CrossRefGoogle Scholar
  4. Albright LF, Shannon PT, Yu SN et al (1963) Solubility of sulphur dioxide in polar organic solvents. A Chem Symp Ser 59,44:66Google Scholar
  5. Akers JE, Squires RG, Albright LF (1965) An evaluation of alcohol-salt mixtures as absorption refrigeration solutions. ASHARAE Trans 71:14Google Scholar
  6. Andrews DH (1964) Refrigerant-absorbent pairs for absorption refrigeration machines. Washington DC American Gas AssociationGoogle Scholar
  7. Buffington RM (1933) Absorption refrigeration with solid absorbents. Refrigeration Eng 26:137Google Scholar
  8. Buffington RM (1949) Quality requirements for absorbent refrigerant combinations. Refrig Eng 57:343–349Google Scholar
  9. Blytas GC, Daniels F (1962) Concentrated solutions of NaSCN in liquid ammonia: solublity, density, vapour pressure, viscosity. Thermal conductance heat of solution and heat capacity. J Amer Chem Soc 84:1075CrossRefGoogle Scholar
  10. Cardwell DSL (1971) From Watt to Clausius: the rise of thermodynamics in the early industrial age. Heinemann, LondonGoogle Scholar
  11. Carnot S (1824) Reflexions sur la puissance motrice du feu et sur les machines propres á développer cette puissance. Bachelier Libraire, ParisGoogle Scholar
  12. Clausius R (1850) Über die bewegende Kraft der Wärme. Part I, Part II. Annalen der Physik 79 368–397, 500–524 (1851), see English translation: On the moving force of heat, and the laws regarding the nature of heat itself which are deducible therefrom. Phil Mag 2:1–21, 102–119Google Scholar
  13. Devault RC, Marsala J (1990) Ammonia-water triple effect absorption cycle. ASHRAE Trans 96:676–82Google Scholar
  14. Dueñas I, Pilatowsky I, Romero RJ et al (2001) A dynamic study of the thermal behaviour of solar thermochemical refrigerator: barium chloride-ammonia for ice production. Sol Ener Mat Sol C 70:401–413CrossRefGoogle Scholar
  15. Eding HJ, Brady AP (1961) Refrigerant-absorbent systems. SRI Project S/3372 Final Report, Stanford Research InstituteGoogle Scholar
  16. Eggers-Lura A, Nielsen P, Stubkier BA, Worse-Schmidt P (1975) Potential use of solar powered refrigeration by an intermittent solid absorption system. Technical University of DenmarkGoogle Scholar
  17. Garimella S, Christensen RN (1992) Cycle description and performance simulation of a gas-fired hydronically coupled double-effect absorption heat pump system. ASE 28, Recent research in heat pump design. ASME 7–14Google Scholar
  18. Grossman G, Zaltash A, Adcock PW et al (1995) Simulating a 4-effect absorption chiller. ASHRAE Jun 45–53Google Scholar
  19. Hainsworth WR (1944) Refrigerants and absorbents. Part I and Part II. Refrig Eng 48:97–100Google Scholar
  20. Hensel WE, Harlowe IW (1972) Compositions for absorption refrigeration system. US Patent 3,643,455Google Scholar
  21. Institut International du Froid (1958) Régles pour machines frigorifiques (Kältemaschinenregeln). German Cold Association (translated by Feniger, CK, Paris)Google Scholar
  22. Kandlikar SG (1982) A new absorber heat recovery cycle to improve COP of aqua-ammonia absorption refrigeration system. ASHRAE Trans 88:141–158Google Scholar
  23. Kaushik SC, Chandra S (1985) Computer modelling and parametric study of a double-effect generation absorption refrigeration cycle. Energy Conversion. Manag 25(1):9–14CrossRefGoogle Scholar
  24. Kaushik SC, Kumar RA (1987) A comparative study of an absorber heat recovery cycle for solar refrigeration using NH3-refrigerant with liquid/solid absorbents. Energy Res 11:123–132CrossRefGoogle Scholar
  25. Le Pierrés N, Mazet N, Stitou D (2007) Modeling and performances of a deep-freezing process using low-grade solar heat. Energy 32(2):154–164CrossRefGoogle Scholar
  26. Macriss RA (1976) Selecting refrigerant absorbent fluid system for solar energy utilization. ASHRAE Trans 82(1): 975–988Google Scholar
  27. Mansoori GA, Patel V (1979) Thermodynamic basis for the choice of working fluids for solar absorption cooling systems. Solar Energy 22(6):483–491CrossRefGoogle Scholar
  28. Macriss RA, Gutraj JM, Zawacki TS (1988) Absorption fluid data survey. Final report on worldwide data. ORLN/sub/8447989/3, Institute of Gas TechnologyGoogle Scholar
  29. Mastrangelo SVR (1959) Solubility of some chlorofluorohydrocarbons in tetraethylene glycol dimetil ether. ASHRAE J 10:64Google Scholar
  30. Meunier F (1998) Solid sorption heat powered cycles for cooling and heat pumping application. Appl Therm Eng 18:715–729CrossRefGoogle Scholar
  31. Niebergall W (1959) Sorptions Kältemaschinen. Handbuch der Kältetechnik, vol VII. Springer, BerlinGoogle Scholar
  32. Pilatowsky I, Rivera W, Romero RJ (2001) Thermodynamic analysis of monomethylamie-water solutions in a single-stage solar absorption refrigeration cycle at low generator temperatures. Sol Energ Mat Sol C 70:287–300CrossRefGoogle Scholar
  33. Potnis SV, Gomezplata A, Papar RA et al (1997) GAX component simulation and validation. ASHRAE Trans 103:444–453Google Scholar
  34. Priedeman DK, Christensen RN (1999) GAX absorption cycle design process. ASHRAE Trans 105(1):769–779Google Scholar
  35. Raldow W (1982) New working pair for absorption processes. In: Workshop Proceedings, Berlin. Swedish Council for Building ResearchGoogle Scholar
  36. Roberson JP, Lee CY, Squires RG and Albright LF (1966) Vapor pressure of ammonia and monomethylamine in solutions for absorption refrigeration system, ASHRAE Trans., 72, Part Y, 198–208.Google Scholar
  37. Romero RJ, Guillen L, Pilatowsky I (2005) Monomethylamine-water vapour absorption refrigeration system. Applied Thermal Engineering 25:867–879CrossRefGoogle Scholar
  38. Rush WF, Macriss RA, Weil SA (1967) A new fluid system for absorption refrigeration. Fourth International Congress of Heating and Air Conditioning, ParisGoogle Scholar
  39. Sargent SL, Beckman WA (1968) Theoretical performance of an Ammonia-NaSCN intermittent absorption refrigeration cycle. Sol Energy 12:137CrossRefGoogle Scholar
  40. Srikhirin P, Aphornratana S, Chungpaibulpatana S (2001) A review of absorption refrigeration technologies. Renew Sust Energ Rev 5(4):343–372CrossRefGoogle Scholar
  41. Staicovici MD (1995) Polybranched regenerative GAX cooling cycles. Int J Refrig 18(5): 318–329CrossRefGoogle Scholar
  42. Swedish Council for Building Research (1982) New working pairs for absorption processes. In: Raldow W (ed) Workshop Proceedings, BerlinGoogle Scholar
  43. Thomson W (Lord Kelvin) (1851) Dynamical theory of heat. Royal Soc Edin 3:48–52Google Scholar
  44. Tyagi KP, Rao KS (1984) Choice of absorbent-refrigerant mixtures. Energy Res 8:361–368CrossRefGoogle Scholar
  45. Weil SA (1960) Thermodynamic properties of lithium chloride, lithium bromide–water system. Report IGT, Project No. S/153, Institute of Gas TechnologyGoogle Scholar
  46. Weil SA, Ellington RT (1956) Corrosion inhibition of lithium bromide–water cooling systems. Project ZB-29, Institute of Gas TechnologyGoogle Scholar
  47. Yong L, Wang RZ (2007) Desorption refrigeration: a survey of novel technologies. Recent Patents on Engineering 1:1–21zbMATHCrossRefGoogle Scholar
  48. Zellhoeffer GF (1937) Solubility of halogenated hydrocarbon refrigerants in organic solvents. Ind Eng Chem 29:548CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • I. Pilatowsky
    • 1
  • R.J. Romero
    • 2
  • C.A. Isaza
    • 3
  • S.A. Gamboa
    • 1
  • P.J. Sebastian
    • 1
  • W. Rivera
    • 1
  1. 1.Centro de Investigación en EnergíaUniversidad Nacional Autónoma de MéxicoTemixcoMexico
  2. 2.Centro de Investigación en Ingeniería y Ciencias AplicadasUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  3. 3.Instituto de Energía, Materiales y Medio Ambiente, Grupo de Energía y TermodinámicaUniversidad Pontificia BolivarianaMedellínColombia

Personalised recommendations