IoT Networking and Communication Layer

  • Khaled Salah Mohamed


The communication layer is considered as the backbone of the IoT systems. It is the main channel between the application layer and different operating activities in the IoT system. The whole physical system is loaded with amounts of data and information that need to be shared with other nodes. Therefore, it is needed to set up a suitable connection network among these nodes through a communication protocol. The communication could be wire-connected or wireless based on the protocol defined by the designer. Moreover, networks are very vital components in IoT to connect things to the outside world of internet. IoT requires an intelligent network infrastructure. Any IoT hardware can connect to the internet via the following [1–17]:


  1. 1.
  2. 2.
    Santitoro, R. Metro Ethernet services—A technical overview. Metro Ethernet Forum.Google Scholar
  3. 3.
    Tonner, D. (2007) The bluetooth blues | information age. [Online]. Retrieved July 19, 2017, from,
  4. 4.
    BR/EDR: Point-to-Point | Bluetooth Technology Website., 2017. [Online]. Retrieved July 19, 2017, from
  5. 5.
  6. 6.
    Nield, D. (2017). Bluetooth 5: Everything you need to know. TechRadar. [online]. Retrieved July 18, 2017, from
  7. 7.
    Sims, G. (2017). The truth about Bluetooth 5 - Gary explains. Android Authority. [Online]. Retrieved August 8, 2017, from
  8. 8.
    Mohammed, K. S. (2009). FPGA implementation of PPM I-UWB baseband transceiver. In Proceedings of the European computing conference. Boston, MA: Springer.Google Scholar
  9. 9.
    Salah, K. (2008). Design and FPGA implementation of non-data aided timing and carrier recovery techniques for EDR Bluetooth standard. Signal processing algorithms, architectures, arrangements, and applications (SPA), 2008. IEEE.Google Scholar
  10. 10.
    Salah, K. (2006). FPGA implementation of Bluetooth 2.0 transceiver. Proceedings of the 5th WSEAS international conference on system science and simulation in engineering. World Scientific and Engineering Academy and Society (WSEAS).Google Scholar
  11. 11.
    What is WiFi and How Does it Work? CCM, 2017. [Online]. Retrieved July 18, 2017, from
  12. 12.
    Lendino, J. (2016). What is 802.11ac Wi-fi, and how much faster than 802.11n is it? - ExtremeTech", ExtremeTech. [Online]. Retrieved July 24, 2017, from
  13. 13.
    Explaining wireless sensor nodes: Zigbee vs. WiFI. YouTube, 2017. [Online]. Retrieved July 18, 2017, from
  14. 14.
    CCTV Institute | CCTV Surveillance Smart-homes Home Automation Zigbee. CCTV Institute, 2017. [Online]. Retrieved July 18, 2017, from
  15. 15.
    Shelby, Z., Hartke, K., Bormann, C. and Frank, B. (2013). Constrained Application Protocol (CoAP), draft-ietf-corecoap-18, Internet Eng. Fremont, CA: Task Force (IETF).Google Scholar
  16. 16.
    Locke, D. (2010). MQ Telemetry Transport (MQTT) v3. 1 Protocol Specification. Markham, ON: IBM Developer Works, Tech. Lib.Google Scholar
  17. 17.
    Tan, L. & Wang, N. (2010). Future internet: The internet of things. Advanced computer theory and engineering (ICACTE), 2010 3rd International Conference on: V5–376.Google Scholar
  18. 18.
  19. 19.
    Gorrepotu, R. (2018). Sub-1GHz miniature wireless sensor node for IoT applications. Internet of Things, 1–2, 27–39. Elsevier.CrossRefGoogle Scholar
  20. 20.
    Pokhrel, S. R., & Williamson, C. (2018). Modeling compound TCP over WiFi for IoT. IEEE/ACM Trans. Netw., 26, 864–878.CrossRefGoogle Scholar
  21. 21.
  22. 22.
  23. 23.
    Strategy, I. & Unit, P. (2005). ITU Internet Reports 2005: The internet of things. Geneva: International Telecommunication Union (ITU).Google Scholar
  24. 24.
    Li, X., Xuan, Z., & Wen, L. (2011). Research on the architecture of trusted security system based on the internet of things. Intelligent Computation Technology and Automation (ICICTA), 2011 International Conference on. 1172–1175.Google Scholar
  25. 25.
    Porkodi, R., & Bhuvaneswari, V. (2014). The internet of things (IoT) applications and communication enabling technology standards: An overview. Intelligent Computing Applications (ICICA), 2014 International Conference on. 324–329.Google Scholar
  26. 26.
    Samie, F., Bauer, L., & Henkel, J. (2016). IoT technologies for embedded computing: A survey. Hardware/software Codesign and system synthesis (CODES+ ISSS), 2016 international conference on. 1–10.Google Scholar
  27. 27.
    Salman, T. (2015). Internet of things protocols and standards. Affairs, M. Of E. N.D. 2015. Internet of things in the Netherlands applications trends and potential impact on radio spectrum.Startix.Google Scholar
  28. 28.
    Paavola, M. (2007). Wireless technologies in process automation-review and an application example. Control Engineering Laboratory, University of Oulu.Google Scholar
  29. 29.
    Le, A., Loo, J., Lasebae, A., Aiash, M., & Luo, Y. (2012). 6LoWPAN: A study on QoS security threats and countermeasures using intrusion detection system approach. International Journal of Communication Systems, 25(9), 1189–1212.CrossRefGoogle Scholar
  30. 30.
    Martha Zemede, K. T. (2015). Explosion of the internet of things: What does it mean for wireless devices?. Keysight Technologies.Google Scholar
  31. 31.
    Goursaud, C., & Gorce, J.-M. (2015). Dedicated networks for IoT: PHY/MAC state of the art and challenges. EAI endorsed transactions on internet of things.Google Scholar
  32. 32.
    Gomez, C., & Paradells, J. (2010). Wireless home automation networks: A survey of architectures and technologies. IEEE Communications Magazine, 48(6), 92.CrossRefGoogle Scholar
  33. 33.
    Rathnayaka, A. D., Potdar, V. M., & Kuruppu, S. J. (2011). Evaluation of wireless home automation technologies. Digital Ecosystems and Technologies Conference (DEST), 2011 Proceedings of the 5th IEEE International Conference on: 76–81.Google Scholar
  34. 34.
    Aragues, A., Martinez, I., Del Valle, P., Muñoz, P., Escayola, J., & Trigo, J. D. (2012). Trends in entertainment, home automation and e-health: Toward cross-domain integration. IEEE Communications Magazine, 50(6), 160.CrossRefGoogle Scholar
  35. 35.
    López, P., Fernández, D., Jara, A. J. & Skarmeta, A. F. (2013). Survey of internet of things technologies for clinical environments. Advanced Information Networking and Applications Workshops (WAINA), 2013 27t International Conference on: 1349–1354.Google Scholar
  36. 36.
    Tabish, R., Mnaouer, A. B., Touati, F. & Ghaleb, A. M. (2013). A comparative analysis of BLE and 6LoWPAN for U-HealthCare applications. GCC Conference and Exhibition (GCC), 2013 7th IEEE. 286–291.Google Scholar
  37. 37.
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys \& Tutorials, 17(4), 2347–2376.CrossRefGoogle Scholar
  38. 38.
    Kuzlu, M., Pipattanasomporn, M. & Rahman, S. (2015). Review of communication technologies for smart homes/building applications. Innovative Smart Grid Technologies-Asia (ISGT ASIA), 2015 IEEE: 1–6.Google Scholar
  39. 39.
    Samuel, S. S. I. (2016). A review of connectivity challenges in IoT-smart home. Big data and Smart City (ICBDSC), 2016 3rd MEC international conference on: 1–4.Google Scholar
  40. 40.
    Raza, U., Kulkarni, P., & Sooriyabandara, M. (2017). Low power wide area networks: An overview. IEEE Communications Surveys & Tutorials.Google Scholar
  41. 41.
    Frantz, T. L. & Carley, K. M. (2005). A formal characterization of cellular networks.Google Scholar
  42. 42.
    Hossen, M., Kabir, A., Khan, R. H., Azfar, A. & others. 2010. Interconnection between 802.15. 4 devices and IPv6: implications andexisting approaches. arXiv preprint arXiv:1002.1146.Google Scholar
  43. 43.
    Azamuddin Bin Ab Rahman, R. J. (2015). Comparison of Internet of Things (IoT) Data Link Protocols.Google Scholar
  44. 44.
    Alliance, L. 2015. A technical overview of LoRa and LoRaWAN. White Paper, November.Google Scholar
  45. 45.
    Shreya Shah, T. M. n.d. Security of NFC Data. International Journal of Advanced Research in Computer Science and Software Engineering, 6, (ISSN: 2277 128X).Google Scholar
  46. 46.
    Hughes, J., Yan, J., & Soga, K. (2015). Development of wireless sensor network using bluetooth low energy (BLE) for construction noise monitoring. International Journal on Smart Sensing and Intelligent Systems, 8(2), 1379–1405.CrossRefGoogle Scholar
  47. 47.
    Ahmad, A. (2005). Wireless and mobile data networks. Wiley.Google Scholar
  48. 48.
    Gomez, C., Oller, J., & Paradells, J. (2012). Overview and evaluation of bluetooth low energy: An emerging low-power wireless technology. Sensors, 12(9), 11734–11753.CrossRefGoogle Scholar
  49. 49.
    Sanchez-Iborra, R., & Cano, M.-D. (2016). State of the art in LP-wan solutions for industrial IoT services. Sensors, 16(5), 708.CrossRefGoogle Scholar
  50. 50.
    Cerruela Garcia, G., Luque Ruiz, I., & Gómez-Nieto, M. Á. (2016). State of the art, trends and future of Bluetooth low energy, near field communication and visible light communication in the development of smart cities. Sensors, 16(11), 1968.CrossRefGoogle Scholar
  51. 51.
    Frenzel, L. (2012). The fundamentals of short-range wireless technology. Electronic Design.Google Scholar
  52. 52.
    Alarcon-Aquino, V., Dominguez-Jimenez, M., & Ohms, C. (2008). Desing and implementation of a security layer for RFID systems. Journal of Applied Research and Technology, 6(2), 69–82.Google Scholar
  53. 53.
    Amin, M., Reaz, M., Jalil, J., & Rahman, L. (2012). Digital modulator and demodulator IC for RFID tag employing DSSS and barker code. Journal of Applied Research and Technology, 10(6), 819–825.Google Scholar
  54. 54.
    Friess, P. (2013). Internet of things: Converging technologies for smart environments and integrated ecosystems. River Publishers.Google Scholar
  55. 55.
    Lu, C.-W., Li, S.-C. & Wu, Q. 2011. Interconnecting ZigBee an 6LoWPAN wireless sensor networks for smart grid applications. Sensing Technology (ICST), 2011 Fifth International Conference on: 267–272.Google Scholar
  56. 56.
    Salah, K. (2006). FPGA implementation of Bluetooth 2.0 transceiver. Proceedings of the 5th WSEAS international conference on system science and simulation in engineering. World Scientific and Engineering Academy and Society (WSEAS), 2006.Google Scholar
  57. 57.
    Chang, K. H. (2014). Bluetooth: A viable solution for IoT? [industry perspectives]. IEEE Wireless Communications, 21(6), 6–7.CrossRefGoogle Scholar
  58. 58.
    Pandya, H. B., Champaneria, T. A. Internet of things: Survey and case studies. 2015 international conference on electrical, electronics, signals, communication and optimization (EESCO), Jan 2015, pp. 1–6.Google Scholar
  59. 59.
    ABI Research. Bluetooth 5 evolution will lead to widespread deployments on the IoT landscape. London, July 2016.Google Scholar
  60. 60.
    Rappaport, T. S. (2002). Wireless communications: Principles and practice. Prentice Hall.Google Scholar
  61. 61.
    Bluetooth Special Interest Group. (2016). Bluetooth Core Specifications. Retrieved from specification.
  62. 62.
  63. 63.
  64. 64.
  65. 65.
    Safeer, K. P., Gupta, P., Shakunthala, D. T., Sundersheshu, B. S., & Padaki, V. C. (2008). Wireless sensor network for wearable physiological monitoring. Journal of Networks, 3(5), 21–29.Google Scholar
  66. 66.
  67. 67.
  68. 68.
    Wang et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.CrossRefGoogle Scholar
  69. 69.
    Akpakwu, et al. (2018). A survey on 5G networks for the internet of.Ings: Communication technologies and challenges. IEEE Access, 6, 3619–3647.CrossRefGoogle Scholar
  70. 70.
    Palattella, M. R., Dohler, M., Grieco, A., Rizzo, G., Torsner, J., Engel, T., & Ladid, L. (Mar. 2016). Internet of things in the 5G era: Enablers, architecture, and business models. IEEE Journal on Selected Areas in Communications, 34(3), 510–527.CrossRefGoogle Scholar
  71. 71.
  72. 72.
  73. 73.
  74. 74.
    Ratasuk, R.; Mangalvedhe, N.; Zhang, Y.; Robert, M.; Koskinen, J.P. Overview of narrowband IoT in LTE Rel-13. Proceedings of the IEEE conference on standards for communications and networking (CSCN), Berlin, Germany, 31 October–2 November 2016; pp. 1–7.Google Scholar
  75. 75.
    Zayas, A.D., & Merino, P. The 3GPP NB-IoT system architecture for the internet of things. Proceedings of the IEEE International Conference on Communications Workshops (ICC Workshops), Paris, France, 21–25 May 2017; pp. 277–282.Google Scholar
  76. 76.
    Chen, M., Miao, Y., Hao, Y., & Hwang, K. (2017). Narrow band internet of things. IEEE Access, 5, 20557–20577.CrossRefGoogle Scholar
  77. 77.
    Adhikary, A., Lin, X., & Wang, Y. P. E. (2017). Performance evaluation of NB-IoT coverage. IEEE Symposium on Communications and Vehicular Technology.Google Scholar
  78. 78.
    Boisguene, R., Tseng, S. C., Huang, C. W., Lin, P. (2017). A survey on NB-IoT downlink scheduling: Issues and potential solutions. 13th Int. Wirel. Commun. Mob. Comput. Conf.Google Scholar
  79. 79.
    IWCMC. (2017). pp. 547–551, 2017.Google Scholar
  80. 80.
    NB-IoT vs LoRa technology - which could take gold? 2016. Retrieved from https://www.lora-
  81. 81.
    “Sigfox-Iot-Technology-Overview @ Www.Sigfox.Com.” [Online]. Retrieved from overview.
  82. 82.
    Retrieved from
  83. 83.
  84. 84.
    Se mtech Corporation. LoRa modulation basics, 2015. Retrieved from
  85. 85.
    Bor, M., Roedig, U. (2017). Lo Ra transmission parameter selection. 2017 13th International Conference on Distributed Computing Systems. pp. 27–34.Google Scholar
  86. 86.
    Robert, J., Heuberger, A. (2017). LPWAN downlink using broadcast transmitters. IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, BMSB, 2017.Google Scholar
  87. 87.
    Lo RaWAN TM 101, A technical introduction, 2017. Retrieved from https://www.lora “products @” [Online]. Retrieved from
  88. 88.
    Marais, J. M., Malekian, R., Abu-Mahfouz, A. M. Lo Ra and LoRaWAN testbeds: A review. 2017 IEEE AFRICON Science Technology Innovation. Africa, AFRICON 2017, pp. 1496–1501, 2017.Google Scholar
  89. 89.
    J. de Carvalho Silva, J. J. P. C. Rodrigues, A. M. Alberti, P. Solic, and A. L. L. Aquino, LoRaWAN—a low power WAN protocol for internet of things: A review and opportunities. 2017 2nd International Multidisciplinary Conference on Computer and Energy Science, pp. 1–6, 2017.Google Scholar
  90. 90.
    C. P. San, J. Bergs, C. Hawinkel, and J. Famaey, “Comparison of Lo RaWAN classes and their power consumption,” IEEE Symposium on Communications and Vehicular Technology, pp. 8–13, 2017.Google Scholar
  91. 91.
    LoRaWAN 1.1 Specification. (2017). Retrieved October 22, 2017, from
  92. 92.
  93. 93.
  94. 94.
    Narayanan, R. (2018). Revisiting software defined radios in the IoT era. ACM.Google Scholar
  95. 95.
    Mohammed, K. S. FPGA implementation of PPM I-UWB baseband transceiver. Proceedings of the European computing conference. Boston, MA: Springer, 2009.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Khaled Salah Mohamed
    • 1
  1. 1.Mentor, A Siemens BusinessCairoEgypt

Personalised recommendations