Advertisement

Matters of Semantics

  • Jan WoleńskiEmail author
Chapter
  • 55 Downloads
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 45)

Abstract

As STT is a semantical theory, its presentation requires explaining what semantics is. This chapter contains a couple of historical and substantive information related to semantics, semantic antinomies, and formal languages.

References

  1. Adamowicz, Z., Artemov, S., Niwiński, D., Orłowska, E., Romanowska, A., Woleński, J. (Eds.) (2004). Provinces of Logic Determined. Essays in the Memory of Alfred Tarski. Parts I, II and III (Annals of Pure and Applied Logic, 127). Amsterdam: Elsevier.Google Scholar
  2. Ajdukiewicz, K. (1993). Kategorie syntaktyczne i antynomie logiczne. Wykłady z semantyki logicznej w r. a. 1930/1931 (Syntactic Categories and Logical Antinomies. Lectures on Logical Semantics in the Academic Year 1930/1931). Filozofia Nauki I/1, 163–182.Google Scholar
  3. Allan, K. (Ed.). (2009). The Concise Encyclopedia of Semantics. Amsterdam: Elsevier.Google Scholar
  4. Bar-Hillel, Y. (1970). Aspects of Language. Amsterdam: North–Holland.Google Scholar
  5. Bar-Hillel, Y. (1970a). Husserl’s conception of a purely logical grammar. In Bar-Hillel, 1970, 89–97.Google Scholar
  6. Beth, E. W. (1962). Formal Methods. An Introduction to Symbolic Logic and to the Study of Effective Operations. Dordrecht: Reidel.Google Scholar
  7. Cann, R. (1993). Formal Semantics. An Introduction. Cambridge: Cambridge University Press.Google Scholar
  8. Cantone, D. Omodeo, E., Policriti, D. (2001). Set Theory for Computing: From Decision Procedures to Declarative Programming with Sets. Berlin: Springer.Google Scholar
  9. Carnap, R. (1934). Logische Syntax der Sprache. Wien: Springer; Engl. tr., London: Routledge and Kegan Paul 1937.Google Scholar
  10. Carnap, R. (1934a). Die Antinomien und die Unvollständingkeit der Mathematik. Monatshefte für Mathematik und Physik, 41, 263–284.Google Scholar
  11. Carnap, R. (1939). Foundations of Logic and Mathematics. Chicago: University of Chicago Press.Google Scholar
  12. Carnap, R. (1942). Introduction to Semantic. Cambridge, Mass: Harvard University Press; 2nd ed., 1958.Google Scholar
  13. Carnap, R. (1963). Intellectual autobiography. In Schilpp (1963), 3–84.Google Scholar
  14. Chappell, V. C. (Ed.) (1964). Ordinary Language. Englewood-Clifts: Prentice-Hall.Google Scholar
  15. Church, A. (1956). Introduction to Mathematical Logic. Princeton: Princeton University Press.Google Scholar
  16. Coffa, A. (1987). Carnap, Tarski and search for truth. Nous, 21, 547–572.Google Scholar
  17. Coffa, A. (1991). The Semantic Tradition from Kant to Carnap. To the Vienna Station. Cambridge: Cambridge University Press.Google Scholar
  18. Copi, I. (1971). The Theory of Logical Types. London: Routledge and Kegan Paul.Google Scholar
  19. Edwards, P. (1967). The Encyclopedia of Philosophy, v. 1–8. New York: Macmillan.Google Scholar
  20. Feferman, S. (1984). Kurt Gödel: conviction and caution. Philosophia Naturalis, 21, 546–562; repr. in Feferman (1998), 150–164.Google Scholar
  21. Feferman, S. (1998). In the Light of Logic. Oxford: Oxford University Press.Google Scholar
  22. Fraenkel, A., Bar-Hillel, Y., Levy, A. (1973). Foundations of Set Theory. Amsterdam: North-Holland.Google Scholar
  23. Gödel, K. (1930). Die Vollständigkeit der Axiome des logischen Funktionenkalkül. Monatshefte für Mathematik und Physik, 37 349–360; repr. with Eng. tr. in Gödel (1986), 102–123.Google Scholar
  24. Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38, 173–198; repr. with Eng. tr. in Gödel (1986), 145–195.Google Scholar
  25. Gödel, K. (1986). Collected Works. Oxford: Oxford University Press.Google Scholar
  26. Hermes, H. (1952). Mathematische Logik. Leipzig: Teubner.Google Scholar
  27. Henkin, L., Addison, J., Chang C. C., Craig, W., Scott, D., Vaught, R. (Eds.) (1974). Proceedings of the Tarski Symposium. An International Symposium Held to Honor Alfred Tarski on the Occasion of His Seventieth Birthday. Providence, R. I.: American Mathematical Society.Google Scholar
  28. Hintikka, J. (1997). Lingua Universalis vs. Calculus Ratiocinator: An Ultimate Presupposition of Twentieth-Century Philosophy. Dordrecht: Kluwer.Google Scholar
  29. Hipkiss, R. A. (1995). Semantics. Defining the Discipline. Mahwah: Erlbaum.Google Scholar
  30. Hiż, H. (2004). Reexamination of Tarski’s semantics. In Adamowicz, Z., Artemov, S., Niwiński, D., Orłowska, E., Romanowska, A., Woleński, J. (2004), 39–48.Google Scholar
  31. Husserl, E. (1929). Formale und transzendentale Logik. Versuch einer Kritik der logischen Vernuft. Halle: Niemeyer; Eng. tr. by D. Cairns, The Hague: Nijhoff 1969.Google Scholar
  32. Husserl, E. (1984). Einleitung in der Logik und Erkenntistheorie (Vortrag 1906–1907). The Hague: Nijhoff; Eng. tr., Dordrecht: Springer 2008.Google Scholar
  33. Kotarbiński, T. (1929). Elementy teorii poznania, logiki formalnej i metodologii nauk (Elements of Theory of Knowledge, Formal Logic and Methodology of Science). Lwów: Ossolineum; Eng. tr., Gniosiology. The Scientific Approach to the Theory of Knowledge. Oxford: Pergamon Press.Google Scholar
  34. Kreisel, G. (1987). Gödel’s excursions into intuionistic logic. In Weingartner, Schmetterer (1987), 65–186.Google Scholar
  35. Kusch, M. (1989). Language as Calculus vs. Language as Universal Medium. A Study in Husserl, Heidegger and Gadamer. Dordrecht: Kluwer.Google Scholar
  36. Leśniewski, S. (1929). Grundzüge eines neuen System der Grundlagen der Mathematik. Fundamenta Mathematicae, 14, 1–81; Eng. tr. (by M. P. O’Neil) in Leśniewski (1992), 410–605.Google Scholar
  37. Leśniewski, S. (1992). Collected Works. Dordrecht: Kluwer.Google Scholar
  38. Mateescu, A., Salomaa, A. (1997a). Formal languages: An introduction and a synopsis. In Rosenberg, Salomaa (1997), 1–39.Google Scholar
  39. Morris, Ch. (1938). Foundations of the Theory of Signs. Chicago: University of Chicago Press.Google Scholar
  40. Mostowski, A. (1948). Logika matematyczna (Mathematical Logic). Warszawa: Monografie Matematyczne.Google Scholar
  41. Mostowski, A. (1967). Alfred Tarski. In Edwards (1967), v. 8, 77–81.Google Scholar
  42. Mycielski, J. (2004). On the tension between Tarski’s nominalism and model theory (Definitions for a Mathemathical Model of Knowledge). In Adamowicz, Z., Artemov, S., Niwiński, D., Orłowska, E., Romanowska, A., Woleński, J. (2004), 215–224.Google Scholar
  43. Ogden, C. K., Richards, I. A. (1923). The Meaning of Meaning: A study of the Influence of Language upon Thought and of the Science of Symbolism. London: Routledge and Kegan Paul.Google Scholar
  44. Quine, W. V. O. (1940). Mathematical logic. Cambridge, Mass.: Harvard University Press.Google Scholar
  45. Quine, V. V. O. (1953). From a Logical point of View. Cambridge, Mass.: Harvard University Press.Google Scholar
  46. Quine, V. V. O. (1953a). Notes on the theory of reference. In Quine (1953), 130–138.Google Scholar
  47. Ramsey, F. P. (1925). The foundations of mathematics. Proceedings of the London Mathematical Society (Series 2), 25, 338–384; repr. in Ramsey (1931), 1–61 and Ramsey (1978), 152–212.Google Scholar
  48. Ramsey, F. P. (1931). The Foundations of Mathematics. London: Routledge and Kegan Paul; 2nd ed., Foundations. Essays in Philosophy, Logic, Mathematics and Economics. London: Routledge and Kegan Paul.Google Scholar
  49. Rosenberg, G., & Salomaa, A. (Eds.). Handbook of Formal Languages, v. 1: Word, Language, Grammar. Berlin: Springer.Google Scholar
  50. Russell, B. (1903). The Principles of Mathematics. Cambridge: Cambridge University Press. Cambridge.Google Scholar
  51. Ryle, G. (1953). Ordinary language. Philosophical Review , XLII, 167–186; repr. in Chappell (1964), 24–40.Google Scholar
  52. Scholz, H. (1950). Vorlesungen über Grundzüge der mathematischen Logik. Münster: Aschendoffsche Verlagsbuchhandlung.Google Scholar
  53. Schilpp, P. A. (Ed.) (1963). The Philosophy of Rudolf Carnap, 3–84. La Salle: Open Court.Google Scholar
  54. Sierpiński, W. (1965). Cardinal and Ordinal Numbers. Warszawa: Państwowe Wydawnictwo Naukowe.Google Scholar
  55. Tarski, A. (1930–1931). O pojęciu prawdy w odniesieniu do sformalizowanych nauk dedukcyjnych (On the Concept of Truth in Reference to Formalized Deductive Sciences). Ruch Filozoficzny, 12, 210–211; repr. in Tarski (1986), v. 4, 559.Google Scholar
  56. Tarski A. (1931). Sur les ensembles définissables de nombres réels. I. Fundamenta Mathematicae, XVII, ss. 210–239; Eng. tr. in A. Tarski, 1956, 110–142.Google Scholar
  57. Tarski, A. (1932). Der Wahrheitsbegriff in der Sprachen der deduktiven Wissenschaften. Akademie der Wissenschaften in Wien. Matematisch-Wissenschaftliche Anzeiger, 69, 23–25; repr. In Tarski (1986), v. 1, 613–617.Google Scholar
  58. Tarski, A. (1933). Pojęcie prawdy w językach nauk dedukcyjnych (The Concept of Truth in Languages of Deductive Sciences). Warszawa: Towarzystwo Naukowe Warszawskie; Germ. tr. (with additions) as Tarski (1935).Google Scholar
  59. Tarski, A. (1935). Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica, 1, 261–405; repr. in Tarski (1986), v. 2, 51–198. Engl. tr. (The Concept of Truth in Formalized Languages), in Tarski (1956), 152–278 (page-references to Tarski (1933).Google Scholar
  60. Tarski A. (1936). Grundlegung der wissenschaftliche Semantik. In Actes du Congès International de Philosophie Scientifique, v. 3), Paris: Herman, 1–8; Eng. tr. in A. Tarski (1956), 401–408.Google Scholar
  61. Tarski, A. (1954). [Contribution to the Discussion of P. Bernays, Zur Beurteilung der Situation in der beweistheoretischen Forschung]. Revue Internationale de Philosophie, 8, 16–20; repr. in Tarski (1986), v. 4, 713–714.Google Scholar
  62. Tarski, A. (1954a). [Remarks of Alfred Tarski]. Revue Internationale de Philosophie, 27–28, 18–19; repr. in Tarski (1986), v. 4, 713).Google Scholar
  63. Tarski, A. (1956). Logic, Semantics, Metamathematics. Papers of 1923 to 1938 (tr. by J. H. Woodger). Oxford: Clarendon Press; 2nd ed., Indianapolis: Hackett Publishing Company.Google Scholar
  64. Tarski, A. (1986). Collected Papers, v. 1–4. Basel: Birkhäuser, 2nd ed., 2018.Google Scholar
  65. Tarski, A. (1986a). What are logical notions? History and Philosophy of Logic, 7, 143–154.Google Scholar
  66. Tuboly, A. T. (2017). From ‘Syntax to ‘Semanik’—Carnap’s Inferentialism and Its Prospects (unupblished manuscript).Google Scholar
  67. Van Heijenoort, J. (1985). Selected Essays. Napoli: Bibliopolis.Google Scholar
  68. Vaught, R. (1974). Model theory before 1945. In Henkin, Addison, Chang, Craig, Scott, Vaught (Eds.) (1974), 153–172.Google Scholar
  69. Vaught, R. (1986). Alfred Tarski’s work in model theory. Journal of Symbolic Logic, 51, 861–882.Google Scholar
  70. Weingartner, P., & Schmetterer, L. (Eds.) (1987). Gödel Remembered. Napoli: Bibliopolis.Google Scholar
  71. Whitehead, A. N., Russell, B. (1910–1913). Principia Mathematica. Cambridge: Cambridge University Press; 2nd ed., 1925.Google Scholar
  72. Woleński, J. (1995a). On Tarski’s background. In J. Hintikka (Ed.). (1995), 331–341); repr. in Woleński (1999), 126–133.Google Scholar
  73. Woleński, J. (1999). Essays in the History of Logic and Logical Philosophy. Kraków: Jagiellonian University Press.Google Scholar
  74. Woleński, J. (1999b). The semantic revolution—Rudolf Carnap, Kurt Gödel, Alfred Tarski. In Woleński, Köhler (1998), 1–15.Google Scholar
  75. Woleński, J. (2018a). The semantics controversy at the Paris Congress 1935. Philosophia Scientiæ, 22(3), 3–15.Google Scholar
  76. Woleński, J., Köhler, E. (Eds.) (1999). Alfred Tarski and the Vienna Circle, Kluwer: Dordrecht.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Jagiellonian University (prof. emeritus)KrakówPoland
  2. 2.University of Information, Technology and ManagementRzeszowPoland

Personalised recommendations