Semantic Theory of Truth—Formal Aspects

  • Jan WoleńskiEmail author
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 45)


This chapter contains a detailed account of STT as a formal theory. The exposition considers truth as truth in a model. Firstly, truth-definition as satisfaction by all sequences of objects is explained. Arithmetic of natural numbers and its models play the crucial role in presenting various results concerning the concept of truth, particularly limitative theorems and the undefinability of arithmetical truth in arithmetic itself. Models constructed on terms are used as tools for defining the denotations of sentences in models. The last section reports Gödel’s and Tarski’s views on limitative theorems and truth.


  1. Adamowicz, Z., Artemov, S., Niwiński, D., Orłowska, E., Romanowska, A., Woleński, J. (Eds.) (2004). Provinces of logic determined. Essays in the memory of Alfred Tarski. Parts VI, IV and VI (Annals of Pure and Applied Logic, 127). Amsterdam: Elsevier.Google Scholar
  2. Barwise, J. (1975). Admissible Sets and Sructures. Berlin: Springer.Google Scholar
  3. Barwise, K., Perry, J. (1983). Situations and Attitudes. Cambridge, Mass: The MIT Press.Google Scholar
  4. Beeh, V. (2003). Die halbe Wahrheit. Tarskis Dfinition & Tarskis Theorem. Paderborn: Mentis.Google Scholar
  5. Bell, J., Machover, M. (1977). A Course in Mathematical Logic. Amsterdam: North-Holland.Google Scholar
  6. Buldt, B. (2002). Philosophische Implikationen der Gödelsche Sätze? Ein Bericht. In Köhler et al. (Vol. 2, 395–438).Google Scholar
  7. Burks, A. (1966). Editior’s comments. In Von Neumann (1966), 53–56.Google Scholar
  8. Carnap, R. (1934). Logische Syntax der Sprache. Wien: Springer; Engl. tr., London: Routledge and Kegan Paul 1937.Google Scholar
  9. Carnap, R. (1934a). Die Antinomien und die Unvollständingkeit der Mathematik. Monatshefte für Mathematik und Physik, 41, 263–284.Google Scholar
  10. Carnap, R. (1947). Meaning and Necessity. A Study in Semantics of Modal Logic. Chicago: University of Chicago Press; 2nd ed. 1956.Google Scholar
  11. Casari, E. (2006). La matematica della verità. Strumenti matematici della semantica logica. Torino: Bollati.Google Scholar
  12. Chang, C. C., Keisler, J. (1990). Model Theory. Amsterdam: North-Holland.Google Scholar
  13. Cook, R. T. (2014). The Yablo paradox. An Essays on Circularity. Oxford: Oxford University Press.Google Scholar
  14. Davis, M. (Ed.). (1965). The Undecidable. Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions. Hewlett, NY: Raven Press.Google Scholar
  15. Dreben, B., Van Heijenoort, J. (1986). Introductory note. In Gödel (1986), 44–59.Google Scholar
  16. Enayat, A.., Kossak, R. (Eds.) (2003). Nonstandard Models of Arithmetic and Set Theory. Providence, R.I.: American Mathematical Society.Google Scholar
  17. Enderton, H. B. (1972). A Mathematical Introduction to Logic. New York: Academic Press.Google Scholar
  18. Feferman, S. (1984). Kurt Gödel: Conviction and caution. Philosophia Naturalis, 21, 546–562; repr. in Feferman (1998), 150–164.Google Scholar
  19. Feferman, S. (1989). The Number Systems. Foundations of Algebra and Analysis. New York: Chelsea Publishing Company.Google Scholar
  20. Feferman, S. (1998). In the Light of Logic. Oxford: Oxford University Press.Google Scholar
  21. Feferman, S. (1999). Tarski and Gödel: Between the lines. In Woleński, Köhler (1999), 53–63.Google Scholar
  22. Feferman, S. (2003). Introductory note. In Gödel (2003), 43–78.Google Scholar
  23. Gaifman, Ch. (2003). Non-standard models in a broader perspective. In Enayat, Kossak (2003), 1–22.Google Scholar
  24. Glanzberg, M. (Ed.) (2018). The Oxford Handbook of Truth. Oxford University Press: Oxford.Google Scholar
  25. Goble, L. (Ed.) (2001). The Blackwell Guide to Philosophical Logic. Oxford: Blackwell.Google Scholar
  26. Gödel, K. (1929). Über die Vollständigkeit des Logikkalkül, Wien Universität, repr. with Eng. tr. in Gödel (1986), 60–101.Google Scholar
  27. Gödel, K. (1930). Die Vollständigkeit der Axiome des logischen Funktionenkalkül. Monatshefte für Mathematik und Physik, 37 349–360; repr. with Eng. tr. in Gödel (1986), 102–123.Google Scholar
  28. Gödel, K. (1930a). Einige metamathematische Resultate über Entscheidungsdefinitheit und Widerspruchsfreiheit. Anzeiger der Akademie der Wissenschaften in Wien, 67, 214–215; repr. with Eng. tr. in Gödel (1986), 140–143.Google Scholar
  29. Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38, 173–198; repr. with Eng. tr. in Gödel (1986), 145–195.Google Scholar
  30. Gödel, K. (1931a). Natrag. Erkenntnis, 2, 149–150; repr. with Eng. tr. in Gödel (1986), 202–204.Google Scholar
  31. Gödel, K. (1932). Über Vollsändigkeit und Widerspruchsfreiheit. Ergebnisse einer mathematischen Kolloqiums. 3, 20–21; repr. with Eng. tr. in Gödel (1986), 234–237.Google Scholar
  32. Gödel, K. (1934). On Undecidable Propositions of Formal Mathematical Systems (mimeographed notes by S. C. Kleene and J. B. Rosser). Princeton: Princeton; repr. (with additions) in Gödel (1986), 346–371.Google Scholar
  33. Gödel, K. (1935). Review of Carnap (1934). Zentralblatt für Mathematik und ihre Grenzgebiete, 11, 1; repr. with Eng. tr. in Gödel (1986), 388–389.Google Scholar
  34. Gödel, K. (1986). Collected Works, v. I. Oxford: Oxford University Press.Google Scholar
  35. Gödel, K. (1995). Collected wWorks, v. III: Unpublished Essays and Lectures. Oxford: Oxford University Press.Google Scholar
  36. Gödel, K. (2003). Collected works, v. IV: Correspondence A–G. Oxford: Clarendon Press.Google Scholar
  37. Gödel, K. (2003a). Collected works, v. V: Correspondence H–Z. Oxford: Clarendon Press.Google Scholar
  38. Goldstern, M., Judah, H. (1995). The Incompleteness Phenomenon. A New Course in Mathematical Logic . Wellesley: A K Peters.Google Scholar
  39. Gómez-Torrente, M. (2004). The indefinability of truth in the “Wahrheitsbegriff”. In Z. Adamowicz, S. Artemov, D. Niwiński, E. Orłowska, A. Romanowska, J. Woleński (2004), 27–38.Google Scholar
  40. Grattan-Guiness, I. (1979). In memoriam Kurt Gödel: His 1931 correspondence with Zermelo on his incompletability theorem. Historia Mathematica, 6, 294–304.Google Scholar
  41. Gries, D., Schneider, F. B. (1993). A Logical Approach to Discrete Mathematics. Berlin: Springer.Google Scholar
  42. Grzegorczyk, A. (1974): An Outline of Mathematical Logic. Dodrecht: D. Reidel.Google Scholar
  43. Hàjek, P., Pudlák, P. (1998). Metamathematics of First-Order Arithmetic. Berlin: Springer.Google Scholar
  44. Henkin, L. (1949). A proof of completeness for the first-order functional calculus. The Journal of Symbolic Logic, 14, 159–166.Google Scholar
  45. Hintikka, J. (1991). Defining Truth, the Whole Truth and Nothing but the Truth. Reports from the Department of Philosophy. Helsinki: University of Helsinki, no. 2; repr. in Hintikka (1997), 46–103.Google Scholar
  46. Hintikka, J. (1996). The Principles of Mathematics Revisited. Cambridge: Cambridge University Press.Google Scholar
  47. Hintikka, J. (1997). Lingua Universalis vs. Calculus Ratiocinator: An Ultimate Presupposition of Twentieth-Century Philosophy. Dordrecht: Kluwer.Google Scholar
  48. Hintikka, J. (1998). Language, Truth and Logic in Mathematics. Dordrecht: Kluwer.Google Scholar
  49. Kaye, R. (1991). Models of Peano Arithmetic. Oxford: Clarendon Press.Google Scholar
  50. Köhler, E. (2002). Gödel und Wiener Kreis. In Köhler et al. (2002) v. 1, 83–108.Google Scholar
  51. Köhler, E. et al. (Eds.) (2002). Kurt Gödel. Wahrheit & Beweisbarkeit, Band 1.: Dokumente und historische Analysen; Band 2.: Kompendium zu Werk. Wien: öbv et htpGoogle Scholar
  52. Kokoszyńska, M. (1936). Syntax, Semantik und Wissenschaftlogik. In Actes du Congès International de Philosophie Scientifique, v. 3. Paris: Herman, 9–14; repr. in Pearce, Woleński (1988), 271–275.Google Scholar
  53. Kossak, R. (2004). Undefinability of truth and non-standard models. In Adamowicz, Artemov, Niwiński, Orłowska, Romanowska, Woleński (2004), 115–123.Google Scholar
  54. Kotlarski, H. (2004). The incompleteness theorems after 70 years. In Adamowicz, Artemov, Niwiński, Orłowska, Romanowska, Woleński (2004), 125–138.Google Scholar
  55. Krajewski, S. (2003). Twierdzenie Gödla i jego interpretacje filozoficzne. Od mechanicyzmu do postmodernizmu (Gödel’s Theorem and Its Philosophical Interpretations. From Mechanicism to Post-Modernism). Warszawa: Wydawnictwo Instytutu Filozofii i Socjologii PAN.Google Scholar
  56. Lindström, P. (2002). Aspects of Incompleteness. Natick, Mass.: A K Peters.Google Scholar
  57. Mendelson, E. (1997). Introduction to Mathematical Logic. London: Champan & Hall.Google Scholar
  58. Menger, K. (1994). Reminiscences of the Vienna Circle and the Mathematical Colloqium. Dordrecht: Kluwer.Google Scholar
  59. Murawski, R. (1998). Undefinability of truth. The problem of priority: Tarski vs. Gödel. History and Philosophy of Logic, 19, 153–160.Google Scholar
  60. Murawski, R. (1999). Recursive Functions and Metamathematics. Problems of Completeness and Decidability. Dordrecht: Kluwer.Google Scholar
  61. Murawski, R. (1999a). Undefinability vs. definability of satisfaction and truth. In Woleński, Köhler (1999), 203–215.Google Scholar
  62. Pantsar, M. (2009). Truth, Proof and Gödelian Arguments. A Defence of Tarskian Truth in Mathematics . Helsinki: University of Helsinki.Google Scholar
  63. Pearce, D., Woleński, J. (Eds.) (1988). Logische Rationalismus. Philosophische Schriften der Lemberg–Warschauer Schule. Frankfurt a. M.: Athenäum.Google Scholar
  64. Poizat, B. (2000). A Course in Model Theory. An Introduction to Contemporary Mathematical Logic. Berlin: Springer.Google Scholar
  65. Popper, K. (1955). A note on Tarski’s definition of truth. Mind, 64, 388–391; repr. in Popper (1972), 335–340.Google Scholar
  66. Popper, K. (1972). Objective Knowledge. An Evolutionary Approach. Oxford: Clarendon Press; repr. with additions, 1974.Google Scholar
  67. Ray, G. (2018). Tarski on the concept of truth. In Glanzberg (2018), 695–719.Google Scholar
  68. Rojszczak, A., Cachro, J., Kurczewski, G. (Eds.). (2003). Dimensions of Logic and Science. Selected Contributed Papers from the 11th International Congress of Logic, Methodology, and Philosophy of Science . Kraków, 1999. Dordrecht: Kluwer.Google Scholar
  69. Rosser, J. B. (1936). Extensions of some theorems of Gödel and Church. The Journal of Symbolic Logic, 1, 87–91; repr. in Davis (1965), 231–235.Google Scholar
  70. Sirakov, B., Ney de Souza, P., Viana, M. (Eds.) (2019). Proceedings of International Congress of Mathematicians. Rio de Janeiro 2018, v. 3. Singapore: World Scientific.Google Scholar
  71. Smorynski, C. (1985). Self-Reference and Modal logic. Berlin: Springer.Google Scholar
  72. Smullyan, R. M. (1992). Gödel’s Incompleteness Theorem. Oxford: Oxford University Press.Google Scholar
  73. Smullyan, R. M. (1994). Gödel’s Incompleteness Theorem. Oxford: Oxford University Press.Google Scholar
  74. Smullyan, R. M. (2001). Gödel’s incompleteness theorems. In Goble (2001), 72–89.Google Scholar
  75. Tarski, A. (1930–1931). O pojęciu prawdy w odniesieniu do sformalizowanych nauk dedukcyjnych (On the Concept of Truth in Reference to Formalized Deductive Sciences). Ruch Filozoficzny, 12, 210–211; repr. in Tarski (1986), v. 4, 559.Google Scholar
  76. Tarski, A. (1930–1931a). O pewnym systemie logiki matematycznej i wynikających z niego zagadnieniach metodologicznych (On certain system of mathematical logic and the resulting methological issues). Ruch Filozoficzny, 12, 222; Eng. tr. (by J. Tarski) in Woleński (2004c), 123.Google Scholar
  77. Tarski A. (1931). Sur les ensembles définissables de nombres réels. I. Fundamenta Mathematicae, XVII, 210–239; Eng. tr. in A. Tarski (1956), 110–142.Google Scholar
  78. Tarski, A. (1932). Der Wahrheitsbegriff in der Sprachen der deduktiven Wissenschaften. Akademie der Wissenschaften in Wien. Matematisch-Wissenschaftliche Anzeiger, 69, 23–25; repr. in A. Tarski (1986), v. 1, 613–617.Google Scholar
  79. Tarski, A. (1933). Pojęcie prawdy w językach nauk dedukcyjnych (The concept of truth in languages of deductive sciences). Warszawa: Towarzystwo Naukowe Warszawskie; Germ. tr. (with additions) as Tarski (1935).Google Scholar
  80. Tarski, A. (1933a). Einige Betrachtungen über die Begriffe ω-Widerspruchsfreiheit und der ω-Vollständigkeit. Monatshefte für Mathematik un Physik, 40, 97–112; repr. in Tarski (1956), 279–295.Google Scholar
  81. Tarski, A. (1935). Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica, 1, 261–405; repr. in Tarski (1986), v. 2, 51–198. Engl. tr. (The Concept of Truth in Formalized Languages) in Tarski (1956), 152–278 (page-references to Tarski (1933)).Google Scholar
  82. Tarski, A. (1939). On undecidable sentences in enlarged systems of logic and the concept of truth. The Journal of Symbolic Logic, 4(3), 105–112; repr. in Tarski (1986), v. 2, 559–570.Google Scholar
  83. Tarski, A. (1956). Logic, Semantics, Metamathematics. Papers of 1923 to 1938 (tr. by J. H. Woodger). Oxford: Clarendon Press; 2nd ed., Indianapolis: Hackett Publishing Company 1983.Google Scholar
  84. Tarski, A. (1969). Truth and proof. Scientific American, 220(6), 63–77; repr. in Tarski (1986), v. 4, 399–423.Google Scholar
  85. Tarski, A. (2001). Odczyt Alfreda Tarskiego na Konferencji o Problemach Matematyki w Princeton, 17 grudnia 1946 (Alfred Tarski’s lecture at the conference on problems of mathematics, Princeton, November 17, 1946). In Tarski (2001), 396–413.Google Scholar
  86. Tarski, A., Mostowski, A., Robinson, R. M. (1953). Undecidable Theories. Amsterdam: Norh-Holland.Google Scholar
  87. Tarski, A. (1986). Collected papers, v. 4. Basel: Birkhäuser; 2nd ed. 2018.Google Scholar
  88. Von Neumann, J. (1966). Theory of Self-Reproducing Automata. Urbana: University of Illinois Press.Google Scholar
  89. Von Plato, J. (2019). In search of the source of incompleteness. In Sirakov, Ney de Souza, Viana, v. 3, 4043–4060.Google Scholar
  90. Wang, H. (1986). Beyond Analytic Philosophy. Doing Justice to What we Know. Cambridge, Mass: The MIT Press.Google Scholar
  91. Wang, H. (1987). Reflections on Kurt Gödel. Cambridge, Mass: The MIT Press.Google Scholar
  92. Wang, H. (1996). A Logical Journey. From Gödel to Philosophy. Cambridge, Mass: The MIT Press.Google Scholar
  93. Woleński, J. (2003). Truth and satisfaction by the empty sequence. In Rojszczak, Cachro, Kurczewski (2003), 267–276; repr. in Woleński (2011), 17–24.Google Scholar
  94. Woleński, J. (2004). Gödel, Tarski and truth. Revue Internationale de Philosophie, 59, 459–490; repr. in Woleński (2011), 101–123.Google Scholar
  95. Woleński, J. (2006). A generalization of Hume’s thesis. Logica Yearbook 2005, 215–223; repr. in Woleński (2011), 155–162.Google Scholar
  96. Woleński, J. (2006a). Tarskian and post–Tarskian truth. In Auxier, Hahn (2006), 647–672: repr. in Woleński (2011), 163–182.Google Scholar
  97. Woleński, J. (2010). Truth and consistency. Axiomathes, 20(2), 347–355; repr. in Woleński (2011), 303–311.Google Scholar
  98. Woleński, J. (2011). Essays on Logic and Its Applications in Philosophy. Frankfurt a. M.: Peter Lang.Google Scholar
  99. Woleński, J., Köhler, E. (Eds.) (1999). Alfred Tarski and the Vienna circle. Austro-Polish Connection in Logical Empiricism. Dordrecht: Kluwer.Google Scholar
  100. Wolf, R. S. (2005). A Tour through Mathematical Logic. Washington: The Mathematical Association of America.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Jagiellonian University (prof. emeritus)KrakówPoland
  2. 2.University of Information, Technology and ManagementRzeszowPoland

Personalised recommendations