Definition of the IoT Device Classes Based on Network Traffic Flow Features

  • Ivan Cvitic
  • Dragan PerakovicEmail author
  • Marko Perisa
  • Mate Botica
Conference paper
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)


The IoT concept assumes a continuous increase in the number of devices which raises the problem of their classification for various purposes. So far, the device classes have been defined based on their semantic characteristics, purpose, functionality, or domain of use. This research intention is to define classes that are based on traffic flow features such as coefficient of variation of received and sent data ratio. Such defined classes can consolidate devices based on behavior predictability and can represent the foundation for the development of classification models for network management or network anomaly detection purposes.


Internet of things Smart home Network anomaly Machine-type communication 


  1. 1.
    Statista. (2018). Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025 (in billions). Retrieved June 24, 2018, from
  2. 2.
    Statista. (2018). The Internet of Things (IoT)∗ units installed base by category from 2014 to 2020 (in billions). Retrieved June 24, 2018, from
  3. 3.
    Cvitić, I., Vujić, M., & Husnjak, S. (2016). Classification of security risks in the IoT environment. In 26-th Daaam international symposium on intelligent manufacturing and automation (pp. 0731–0740). Scholar
  4. 4.
    Ali, B., & Awad, A. (2018). Cyber and physical security vulnerability assessment for IoT-based smart homes. Sensors, 18(3), 817. Scholar
  5. 5.
    Al-Shammari, B. K. J., Al-Aboody, N., & Al-Raweshidy, H. S. (2018). IoT traffic management and integration in the QoS supported network. IEEE Internet of Things Journal, 5(1), 352–370. Scholar
  6. 6.
    Laner, M., Svoboda, P., Nikaein, N., & Rupp, M. (2013). Traffic models for machine type communications. In 10th IEEE international symposium on wireless communication systems 2013, ISWCS 2013 (Vol. 9, pp. 651–655). Ilmenau, Germany: VDE.Google Scholar
  7. 7.
    Sivanathan, A., Sherratt, D., Gharakheili, H. H., Radford, A., Wijenayake, C., Vishwanath, A., & Sivaraman, V. (2017). Characterizing and classifying IoT traffic in smart cities and campuses. In 2017 IEEE conference on computer communications workshops, INFOCOM WKSHPS 2017 (pp. 559–564). Atlanta, USA: IEEE.
  8. 8.
    Meidan, Y., Bohadana, M., Shabtai, A., Ochoa, M., Tippenhauer, N. O., Guarnizo, J. D., & Elovici, Y. (2017). Detection of unauthorized IoT devices using machine learning techniques. arXiv. Retrieved from
  9. 9.
    Bai, L., Yao, L., Kanhere, S. S., Wang, X., & Yang, Z. (2018). Automatic device classification from network traffic streams of internet of things. Retrieved from
  10. 10.
    Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Breitenbacher, D., Shabtai, A., & Elovici, Y. (2018). N-BaIoT: Network-based detection of IoT botnet attacks using deep autoencoders. IEEE Pervasive Computing, 13(9), 1–8.Google Scholar
  11. 11.
    Sivanathan, A., Habibi Gharakheili, H., Loi, F., Radford, A., Wijenayake, C., Vishwanath, A., & Sivaraman, V. (2018). Classifying IoT devices in smart environments using network traffic characteristics. IEEE Transactions on Mobile Computing, 18, 1–1. Scholar
  12. 12.
    Shafiq, M. Z., Ji, L., Liu, A. X., Pang, J., & Wang, J. (2013). Large-scale measurement and characterization of cellular machine-to-machine traffic. IEEE/ACM Transactions on Networking, 21(6), 1960–1973. Scholar
  13. 13.
    IHS. (2017). The internet of things: A movement, not a market start revolutionizing the competitive landscape. IHS Markit. Retrieved from
  14. 14.
    Hamza, A., Ranathunga, D., Gharakheili, H. H., Roughan, M., & Sivaraman, V. (2018). Clear as MUD. In Proceedings of the 2018 workshop on IoT security and privacy – IoT S&P ‘18 (pp. 8–14). New York: ACM Press. Scholar
  15. 15.
    Hamza, A., Gharakheili, H. H., & Sivaraman, V. (2018). Combining MUD policies with SDN for IoT intrusion detection. In Proceedings of the 2018 workshop on IoT security and privacy – IoT S&P ‘18 (pp. 1–7). New York: ACM Press. Scholar
  16. 16.
    Cvitić, I., Peraković, D., Periša, M., & Botica, M. (2018). Smart home IoT traffic characteristics as a basis for DDoS traffic detection. In Proceedings of the 3rd EAI international conference on management of manufacturing systems (pp. 1–10). EAI.
  17. 17.
    Karimi, A. M., Niyaz, Q., Sun, W., Javaid, A. Y., & Devabhaktuni, V. K. (2016). Distributed network traffic feature extraction for a real-time IDS. IEEE international conference on electro information technology, 2016–Augus, 522–526.
  18. 18.
    Amar, Y., Haddadi, H., Mortier, R., Brown, A., Colley, J., & Crabtree, A. (2018). An analysis of home IoT network traffic and behaviour. arXiv:1803.05368. Retrieved from
  19. 19.
    Aghaei-Foroushani, V., & Zincir-Heywood, A. N. (2015). A proxy identifier based on patterns in traffic flows. In Proceedings of IEEE international symposium on high assurance systems engineering (pp. 118–125). IEEE.
  20. 20.
    Habibi Lashkari, A., Draper Gil, G., Mamun, M. S. I., & Ghorbani, A. A. (2017). Characterization of Tor traffic using time based features, (Cic), 253–262.
  21. 21.
    Doshi, R., Apthorpe, N., & Feamster, N. (2018). Machine learning DDoS detection for consumer internet of things devices. CoRR, abs/1804.04159. Retrieved from
  22. 22.
    Vaz, M. A. B., Pacheco, P. S., Seidel, E. J., & Ansuj, A. P. (2017). Classification of the coefficient of variation to variables in beef cattle experiments. Ciência Rural, 47(11), 9–12. Scholar
  23. 23.
    Couto, M. F., Peternelli, L. A., & Barbosa, M. H. P. (2017). Classification of the coefficients of variation for sugarcane crops. Ciência Rural, 43(6), 957–961. Scholar
  24. 24.
    Romano, F. L., Ambrosano, G. M. B., de Araújo Magnani, M. B. B., & Nouer, D. F. (2005). Analysis of the coefficient of variation in shear and tensile bond strength tests. Journal of applied oral science, 13(3), 243–246. Retrieved from Scholar
  25. 25.
    Alice, A., Noleto, S., Ferreira, D. C., Rocha, L., Dourado, B., Regia, K., & Sousa, S. (2018). Methods for classifying coefficients of variation in experimentation with poultrys. Comunicata Scientiae, 9(December 2017), 565–574. Scholar
  26. 26.
    Ernst, P. A., Thompson, J. R., & Miao, Y. (2017). Tukey’s transformational ladder for portfolio management. Financial Markets and Portfolio Management, 31, 317. Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ivan Cvitic
    • 1
  • Dragan Perakovic
    • 1
    Email author
  • Marko Perisa
    • 1
  • Mate Botica
    • 2
  1. 1.Faculty of Transport & Traffic SciencesUniversity of ZagrebZagrebCroatia
  2. 2.OiV Transmitters and Communications Ltd.ZagrebCroatia

Personalised recommendations