Risk Assessment for Diabetes

  • Laura J. GrayEmail author


Type 2 diabetes is a serious chronic condition that may go undetected and therefore untreated for many years. Therefore many people with type 2 diabetes have complications present at diagnosis. Non-diabetic hyperglycaemia is a condition where blood glucose levels are elevated beyond normal but not high enough to be diagnosed with diabetes. Those with non-diabetic hyperglycaemia are at high risk of developing type 2 diabetes. Data from robust clinical trials show that earlier treatment for type 2 diabetes may improve outcomes and that diabetes can be prevented in those with non-diabetic hyperglycaemia through lifestyle change; therefore, early identification is required. Uptake to routine health checks is low. Non-invasive risk assessments for diabetes offer a quick and easy way to detect those at high risk of these conditions and to target definitive testing whilst also engaging individuals with their risk factors. Such assessments use non-invasive risk factors to assess risk and can be used within routine care or opportunistically. Using such risk assessments is recommended by NICE to detect those at risk of diabetes.


  1. 1.
    Diabetes UK. Diabetes in the UK 2010: Key statistics on diabetes. 2010.Google Scholar
  2. 2.
    IDF. Diabetes Atlas Eighth Edition. 2017.
  3. 3.
    Harris MI, et al. Onset of NIDDM occurs at least 4–7 yr before clinical diagnosis. Diabetes Care. 1992;15(7):815–9.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pierce MB, et al. Undiagnosed diabetes—data from the English longitudinal study of ageing. Diabet Med. 2009;26(7):679–85.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Griffin SJ, et al. Effect of early intensive multifactorial therapy on 5-year cardiovascular outcomes in individuals with type 2 diabetes detected by screening (ADDITION-Europe): a cluster-randomised trial. Lancet. 2011;378(9786):156–67.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    World Health Organisation. Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus. Geneva: World Health Organisation; 2011.Google Scholar
  7. 7.
    Morris DH, et al. Progression rates from HbA1c 6.0–6.4% and other prediabetes definitions to type 2 diabetes: a meta-analysis. Diabetologia. 2013;56(7):1489–93.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    National Cardiovascular Intelligence Network (NCVIN). NHS Diabetes Prevention Programme (NHS DPP) Non-diabetic hyperglycaemia. 2015.
  9. 9.
    Gillies CL, et al. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ. 2007;334:299.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
  11. 11.
    Hex N, et al. Estimating the current and future costs of type 1 and type 2 diabetes in the UK, including direct health costs and indirect societal and productivity costs. Diabet Med. 2012;29(7):855–62.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tunceli K, et al. The impact of Diabetes on employment and work productivity. Diabetes Care. 2005;28(11):2662–7.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    American Diabetes Association. Economic costs of diabetes in the US in 2012. Diabetes Care. 2013;36(4):1033–46.CrossRefGoogle Scholar
  14. 14.
    Nichols GA, Arondekar B, Herman WH. Medical care costs one year after identification of hyperglycemia below the threshold for diabetes. Med Care. 2008;46:287–92.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Herman WH. The economics of diabetes prevention. Med Clin. 2011;95(2):373–84.Google Scholar
  16. 16.
    Waugh N, et al. Screening for type 2 diabetes: literature review and economic modelling. Health Technol Assess. 2007;11(17):144.CrossRefGoogle Scholar
  17. 17.
    Erlinger TP, Brancati FL. Postchallenge hyperglycemia in a national sample of U.S. adults with type 2 diabetes. Diabetes Care. 2001;24(10):1734–8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Davidson MB, Peters AL, Schriger DL. An alternative approach to the diagnosis of diabetes with a review of the literature. Diabetes Care. 1995;18(7):1065–71.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Waugh N, et al. Screening for type 2 diabetes: a short report for the National Screening Committee. Health Technol Assess. 2013;17(35):1–90.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gallagher EJ, Bloomgarden ZT, Roith D. Review of hemoglobin A1c in the management of diabetes. J Diabetes. 2009;1(1):9–17.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Herman WH, Ma Y, Uwaifo G. Differences in A1C by race and ethnicity among patients with impaired glucose tolerance in the diabetes prevention program. Diabetes Care. 2007;30(10):2453–7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mostafa SA, et al. Independent effect of ethnicity on Glycemia in south Asians and white Europeans. Diabetes Care. 2012;35(8):1746–8.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mostafa SA, et al. The potential impact of using glycated haemoglobin, HbA1c, as the preferred diagnostic tool for type 2 diabetes mellitus. Diabet Med. 2010;72:762–9.CrossRefGoogle Scholar
  24. 24.
    Gray LJ, Khunti K. Type 2 diabetes risk prediction—do biomarkers increase detection? Diabetes Res Clin Pract. 2013;101(3):245–7.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Khunti K, et al. A comparison of cost per case detected of screening strategies for type 2 diabetes and impaired glucose regulation: modelling study. Diabetes Res Clin Pract. 2012;97(3):505–13.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Buijsse B, et al. Risk assessment tools for identifying individuals at risk of developing type 2 diabetes. Epidemiol Rev. 2011;33(1):46–62.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Collins GS, et al. Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting. BMC Med. 2011;9:103.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Noble D, et al. Risk models and scores for type 2 diabetes: systematic review. BMJ. 2011;343:d7163.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Barber SR, et al. Risk assessment tools for detecting those with pre-diabetes: a systematic review. Diabetes Res Clin Pract. 2014;105(1):1–13. Epub 2014 Mar 18.
  30. 30.
    Lindström J, Tuomilehto J. The Diabetes risk score. Diabetes Care. 2003;26(3):725–31.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Saaristo T, et al. Cross-sectional evaluation of the Finnish Diabetes risk score: a tool to identify undetected type 2 diabetes, abnormal glucose tolerance and metabolic syndrome. Diab Vasc Dis Res. 2005;2(2):67–72.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cos FX, et al. Screening for people with abnormal glucose metabolism in the European DE-PLAN project. Diabetes Res Clin Pract. 2015;109(1):149–56.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Al-Lawati JA, Tuomilehto J. Diabetes risk score in Oman: a tool to identify prevalent type 2 diabetes among Arabs of the Middle East. Diabetes Res Clin Pract. 2007;77(3):438–44.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chien K, et al. A prediction model for type 2 diabetes risk among Chinese people. Diabetologia. 2009;52(3):443–50.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Glümer C, et al. Risk scores for type 2 Diabetes can be applied in some populations but not all. Diabetes Care. 2006;29(2):410–4.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Griffin SJ, et al. Diabetes risk score: towards earlier detection of type 2 diabetes in general practice. Diabetes Metab Res Rev. 2000;16(3):164–71.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gray LJ, et al. The Leicester risk assessment score for detecting undiagnosed type 2 diabetes and impaired glucose regulation for use in a multiethnic UK setting. Diabet Med. 2010;27(8):887–95.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gray LJ, et al. Detection of impaired glucose regulation and/or type 2 diabetes mellitus, using primary care electronic data, in a multiethnic UK community setting. Diabetologia. 2012;55(4):959–66.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hippisley-Cox J, et al. Predicting risk of type 2 diabetes in England and Wales: prospective derivation and validation of QDScore. Br Med J. 2009;388:b880.CrossRefGoogle Scholar
  40. 40.
    Hippisley-Cox J, Coupland C. Development and validation of QDiabetes-2018 risk prediction algorithm to estimate future risk of type 2 diabetes: cohort study. BMJ. 2017;359:j5019.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Webb DR, et al. Rationale and design of the ADDITION-Leicester study, a systematic screening programme and randomised controlled trial of multi-factorial cardiovascular risk intervention in people with type 2 diabetes mellitus detected by screening. Trials. 2010;11:16.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Willis A, et al. A community faith centre based screening and educational intervention to reduce the risk of type 2 diabetes: a feasibility study. Diabetes Res Clin Pract. 2016;120:73–80.CrossRefGoogle Scholar
  43. 43.
    Gray LJ, et al. External validation of two diabetes risk scores in a young UK South Asian population. Diabetes Res Clin Pract. 2014;104(3):451–8.CrossRefGoogle Scholar
  44. 44.
    Dunkley AJ, et al. Screening for glucose intolerance and development of a lifestyle education programme for prevention of type 2 diabetes in a population with intellectual disabilities: the STOP Diabetes research project. Southampton (UK): NIHR Journals Library; 2017. (Programme Grants for Applied Research, No. 5.11).Google Scholar
  45. 45.
    Barber S, et al. Prospective validation of the Leicester/Diabetes UK risk assessment for diagnosis of Type 2 diabetes. In Diabetes UK. Glasgow: Diabetic Medicine; 2016.Google Scholar
  46. 46.
    Chatterton H, et al. Risk identification and interventions to prevent type 2 diabetes in adults at high risk: summary of NICE guidance. BMJ. 2012;12(345):e4624.CrossRefGoogle Scholar
  47. 47.
    Patel N, et al. Developing a conceptually equivalent type 2 diabetes risk score for Indian Gujaratis in the UK. J Diab Res. 2016;2016:9.Google Scholar
  48. 48.
    Hippisley-Cox J, Coupland C, Brindle P. The performance of seven QPrediction risk scores in an independent external sample of patients from general practice: a validation study. BMJ Open. 2014;4(8):e005809.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Collins GS, Altman DG. External validation of QDSCORE® for predicting the 10-year risk of developing type 2 diabetes. Diabet Med. 2011;28(5):599–607.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    National Cardiovascular Intelligence Network (NCVIN). NHS Diabetes Prevention Programme (NHS DPP) Non-diabetic hyperglycaemia. Public Health England. 2015.
  51. 51.
    Robson J, et al. The NHS health check in England: an evaluation of the first 4 years. BMJ Open. 2016;6(1):e008840.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Smith S, Waterall J, Burden ACF. An evaluation of the performance of the NHS health check programme in identifying people at high risk of developing type 2 diabetes. BMJ Open. 2013;3(3):e002219.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    NICE. Type 2 diabetes: prevention in people at high risk. Public health guideline [PH38]. 2017.Google Scholar
  54. 54.
    Sandbaek A, et al. Stepwise screening for diabetes identifies people with high but modifiable coronary heart disease risk. The ADDITION study. Diabetologia. 2008;51(7):1127–34.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Tao L, et al. Cost-effectiveness of intensive multifactorial treatment compared with routine care for individuals with screen-detected type 2 diabetes: analysis of the ADDITION-UK cluster-randomized controlled trial. Diabet Med. 2015;32(7):907–19.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sandbæk A, et al. Effect of early multifactorial therapy compared with routine care on microvascular outcomes at 5 years in people with screen-detected diabetes: a randomized controlled trial. The ADDITION-Europe Study. Diabetes Care. 2014;37(7):2015–23.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Herman WH, et al. Early detection and treatment of type 2 diabetes reduce cardiovascular morbidity and mortality: a simulation of the results of the Anglo-Danish-Dutch study of intensive treatment in people with screen-detected diabetes in primary care (ADDITION-Europe). Diabetes Care. 2015;38(8):1449–55.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Gillies CL, et al. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ. 2007;334:299.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Knowler WC, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Troughton J, et al. Development of a lifestyle intervention using the MRC framework for diabetes prevention in people with impaired glucose regulation. J Public Health (Oxf). 2016;38(3):​493–501. Epub 2015 Aug 25.Google Scholar
  61. 61.
    Davies MJ, et al. A community based primary prevention programme for type 2 diabetes integrating identification and lifestyle intervention for prevention: the let’s prevent Diabetes cluster randomised controlled trial. Prev Med. 2016;84:48–56.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Gray LJ, et al. Engagement, retention, and progression to type 2 diabetes: a retrospective analysis of the cluster-randomised “Let’s Prevent Diabetes” trial. PLoS Med. 2016;13(7):e1002078.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Leal J, et al. Cost-effectiveness of a pragmatic structured education intervention for the prevention of type 2 diabetes: economic evaluation of data from the let’s prevent diabetes cluster-randomised controlled trial. BMJ Open. 2017;7(1):e013592.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Lascar N, et al. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018;6(1):69–80. Epub 2017 Aug 25.
  65. 65.
    Dabelea D, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA. 2014;311(17):1778–86.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Holden S, et al. The incidence of type 2 diabetes in the United Kingdom from 1991 to 2010. Diabetes Obes Metab. 2013;15(9):844–52.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Candler TP, et al. Continuing rise of type 2 diabetes incidence in children and young people in the UK. Diabet Med. 2018;35(6):737–44.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Wilmot E, Idris I. Early onset type 2 diabetes: risk factors, clinical impact and management. Ther Adv Chronic Dis. 2014;5(6):234–44.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Wilmot EG, et al. Prevalence of diabetes and impaired glucose metabolism in younger ‘at risk’ UK adults: insights from the STAND programme of research. Diabet Med. 2013;30(6):671–5.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    The Lancet. Type 2 diabetes: the urgent need to protect young people. Lancet. 2018;392.Google Scholar
  71. 71.
    Eborall H, et al. Patients’ experiences of screening for type 2 diabetes: prospective qualitative study embedded in the ADDITION (Cambridge) randomised controlled trial. BMJ. 2007;335(7618):490.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Willis AW. The effectiveness of screening for type 2 diabetes within a community pharmacy setting, in Department of Health Sciences. University of Leicester; 2015.Google Scholar
  73. 73.
    Twigg MJ, et al. Community pharmacy type 2 diabetes risk assessment: demographics and risk results. Int J Pharm Pract. 2015;23(1):80–2.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    George PM, et al. Screening for type 2 diabetes in the accident and emergency department. Diabet Med. 2005;22(12):1766–9.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Gomez-Peralta F, et al. Point-of-care capillary HbA1c measurement in the emergency department: a useful tool to detect unrecognized and uncontrolled diabetes. Int J Emerg Med. 2016;9(1):1–6.CrossRefGoogle Scholar
  76. 76.
    Hng T-M, et al. Diabetes case finding in the emergency department, using HbA1c: an opportunity to improve diabetes detection, prevention, and care. BMJ Open Diabetes Res Care. 2016;4(1).Google Scholar
  77. 77.
    NHS Dental Statistics. NHS Dental Statistics for England, 2017–18, Second quarterly report. NHS Digital 2018.Google Scholar
  78. 78.
    Preshaw PM, et al. Periodontitis and diabetes: a two-way relationship. Diabetologia. 2012;55(1):21–31.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Lalla E, et al. Identification of unrecognized diabetes and pre-diabetes in a dental setting. J Dent Res. 2011;90(7):855–60.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    AlGhamdi AST, et al. Dental clinics as potent sources for screening undiagnosed diabetes and prediabetes. Am J Med Sci. 2013;345(4):331–4.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Genco RJ, et al. Screening for diabetes mellitus in dental practices: a field trial. J Am Dent Assoc. 2014;145(1):57–64.CrossRefGoogle Scholar
  82. 82.
    Yonel Z, et al. Patients’ attendance patterns to different healthcare settings and perceptions of stakeholders regarding screening for chronic, non-communicable diseases in high street dental practices and community pharmacy: a cross-sectional study. BMJ Open. 2018;8(11):e024503.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Health SciencesUniversity of LeicesterLeicesterUK

Personalised recommendations