Advertisement

Office Procedures for Pain

  • Kavita TrivediEmail author
Chapter
  • 89 Downloads

Abstract

Office procedures for pain can be a good option to help patients with various musculoskeletal issues that cause pain and functional impairment. The indication for an in-office pain procedure is to relieve pain, reduce inflammation, and improve mobility. These procedures can be considered in an acute or chronic pain situation and can be applied to different areas, including the shoulder, elbow, hip, knee, and myofascia. Obtaining a good history, performing a thorough physical examination, and getting appropriate imaging are all important in the decision-making process for an in-office procedure. Just as important as knowing when to consider an in-office procedure, it is critical to understand when an office procedure is contraindicated. The most common medication used for these injections is corticosteroid; however, other injectable agents, including botulinum toxin, platelet-rich plasma, and hyperosmolar dextrose, are being considered as other possible options for injection therapy. If performed in the appropriate situation, an in-office procedure can be helpful in improving a patient’s mobility and quality of life.

Keywords

Office procedures Corticosteroid injections Musculoskeletal pain Pain procedures Office injections 

References

  1. 1.
    Grichnik KP, Ferrante FM. The difference between acute and chronic pain. Mt Sinai J Med. 1991;58(3):217–20.PubMedGoogle Scholar
  2. 2.
    Mantel KE, et al. Exploring the definition of acute low back pain: a prospective observational cohort study comparing outcomes of chiropractic patients with 0-2, 2-4, and 4-12 weeks of symptoms. J Manip Physiol Therapy. 2016;39(3):141–9.CrossRefGoogle Scholar
  3. 3.
    Stephens MB, et al. Musculoskeletal injections: a review of the evidence. Am Fam Physician. 2008;78(8):971–6.PubMedGoogle Scholar
  4. 4.
    Ayhan E, et al. Intraarticular injections (corticosteroid, hyaluronic acid, platelet rich plasma) for knee osteoarthritis. World J Orthop. 2014;5(3):351–61.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Centeno LM, Moore ME. Preferred intraarticular corticosteroids and associated practice: a survey of members of the American College of Rheumatology. Arthritis Care Res. 1994;7(3):151–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Benzon HT, et al. Piriformis syndrome: anatomic considerations, a new injection technique and a review of the literature. Anesthesiology. 2003;98(6):1442–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Lew MF. Review of the FDA-approved uses of botulinum toxins, including data suggesting efficacy in pain reduction. Clin J Pain. 2002;18(6 Suppl):S142–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Singh JA. Botulinum toxin therapy for osteoarticular pain: an evidence-based review. Ther Adv Musculoskelet Dis. 2010;2(2):105–18.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Foster TE, et al. Platelet-rich plasma – from basic science to clinical applications. Am J Sports Med. 2009;37(11):2259–72.PubMedCrossRefGoogle Scholar
  10. 10.
    Laudy AB, et al. Efficacy of platelet-rich plasma injections in osteoarthritis of the knee; a systematic review and meta-analysis. Br J Sports Med. 2015;49:657–72.PubMedCrossRefGoogle Scholar
  11. 11.
    Distel LM, Best TM. Prolotherapy: a clinical review of its role in treating chronic musculoskeletal pain. PM&R. 2011;3(6 Suppl):S78–81.CrossRefGoogle Scholar
  12. 12.
    Hauser RA, et al. A systematic review of dextrose prolotherapy for chronic musculoskeletal pain. Clin Med Insights Arthritis Musculoskelet Disord. 2016;9:139–59.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    DeChellis DM, Cortazzo MH. Regenerative medicine in the field of pain medicine: prolotherapy, platelet-rich plasma therapy, and stem cell therapy-theory and evidence. Tech Reg Anesth Pain Manag. 2011;15(2):74–80.CrossRefGoogle Scholar
  14. 14.
    Rabago D, et al. A systematic review of prolotherapy for chronic musculoskeletal pain. Clin J Sport Med. 2005;15(5):E376.CrossRefGoogle Scholar
  15. 15.
    Haghighat S, et al. Effectiveness of blind & ultrasound guided corticosteroid injection in impingement syndrome. Glob J Health Sci. 2016;8(7):179–84.CrossRefGoogle Scholar
  16. 16.
    Sage W, et al. The clinical and functional outcomes of ultrasound-guided vs landmark-guided injections for adults with shoulder pathology-a systematic review and meta-analysis. Rheum. 2013;52(4):743–51.CrossRefGoogle Scholar
  17. 17.
    Daniels EW, et al. Existing evidence on ultrasound-guided injections in sports medicine. Ortho J Sports Med. 2018;6(2):1–7CrossRefGoogle Scholar
  18. 18.
    The Joint Commission. Comprehensive accreditation manual glossary. 2016.Google Scholar
  19. 19.
  20. 20.
    Terry GC, Chopp TM. Functional anatomy of the shoulder. J Athletic Train. 2000;35(3):248–55.Google Scholar
  21. 21.
    Matsen FA, et al. Glenohumeral arthritis and its management. The shoulder. 3rd ed. Philadelphia: Saunders; 2004. p. 879–1009.Google Scholar
  22. 22.
    Thomas M, et al. BESS/BOA patient care pathways – glenohumeral osteoarthritis. Shoulder Elbow. 2016;8(3):203–14.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Uppal HS, et al. Frozen shoulder: a systematic review of therapeutic options. World J Orthop. 2015;6(2):263–8.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Chen AL, et al. Rheumatoid arthritis of the shoulder. J Am Acad Ortho Surg. 2003;11(1):12–24.CrossRefGoogle Scholar
  25. 25.
    Tallia AF, et al. Diagnostic and therapeutic injection of the shoulder region. Am Fam Physician. 2003;67(6):1271–8.PubMedGoogle Scholar
  26. 26.
    Cushman DM, et al. Efficacy of injected corticosteroid type, dose, and volume for pain in large joints: a narrative review. PMR. 2018;10(7):748–57.CrossRefGoogle Scholar
  27. 27.
    Covey DC, Sapega AA. Current concepts review: injuries to the posterior cruciate ligament. J Bone Joint Surg Am. 1993;75:1376–86.PubMedCrossRefGoogle Scholar
  28. 28.
    Koester MC, et al. Shoulder impingement syndrome. Am J Med. 2005;118:452–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Guido FR. Acute calcified subacromial or subdeltoid bursitis. Cal West Med. 1944;60(2):69–72.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Blaine TA, et al. The molecular pathophysiology of subacromial bursitis in rotator cuff disease. J Shoulder Elbow Surg. 2005;14(1 Suppl S):84S–9S.PubMedCrossRefGoogle Scholar
  31. 31.
    Phillips N. Tests for diagnosing subacromial impingement syndrome and rotator cuff disease. Shoulder Elbow. 2014;6(3):215–21.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Factor D, Dale B. Current concepts of rotator cuff tendinopathy. Int J Sports Phys Ther. 2014;9(2):274–88.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Hawkins RJ, Kennedy JC. Impingement syndrome in athletes. Am J Sports Med. 1980;8:151–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Neer CS. Anterior acromioplasty for the chronic impingement syndrome in the shoulder: a preliminary report. J Bone Joint Surg Am. 1972;54:41–50.PubMedCrossRefGoogle Scholar
  35. 35.
    Shin KM. Partial-thickness rotator cuff tears. Kor J Pain. 2011;24(2):69–73.CrossRefGoogle Scholar
  36. 36.
    Andres BM, Murrell GA. Treatment of tendinopathy: what works, what does not, and what is on the horizon. Clin Orthop Related Res. 2008;466(7):1539–54.CrossRefGoogle Scholar
  37. 37.
    Obaid H, Connell D. Cell therapy in tendon disorders: what is the current evidence? Am J Sports Med. 2010;38(10):2123–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Seitz AL, et al. Mechanisms of rotator cuff tendinopathy: intrinsic, extrinsic, or both? ClinBiomech. 2011;26(1):1–12.Google Scholar
  39. 39.
    Blair B, et al. Efficacy of injections of corticosteroids for subacromial impingement syndrome. J Bone Joint Surg Am. 1996;78:1685–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Akgun K, et al. Is local subacromial corticosteroid injection beneficial in subacromial impingement syndrome? Clin Rheum. 2004;23(6):496–500.CrossRefGoogle Scholar
  41. 41.
    Arroll B, Goodyear-Smith F. Corticosteroid injections for osteoarthritis of the knee: meta-analysis. BMJ. 2004;328(744):869.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Patel DR, Nelson TL. Sports injuries in adolescents. Med Clin North Am. 2000;84:983–1007.PubMedCrossRefGoogle Scholar
  43. 43.
    Colegate-Stone TJ, et al. An analysis of acromioclavicular joint morphology as a factor for shoulder impingement syndrome. Shoulder Elbow. 2014;6(3):165–70.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    O’Brien SA. Osteolysis of the distal clavicle: an important consideration in chronic shoulder pain. J CCA. 1987;31(1):31–2.Google Scholar
  45. 45.
    Cahill BR. Osteolysis of distal part of clavicle in male athletes. J Bone Jt Surg (Am). 1982;64A:1053–8.CrossRefGoogle Scholar
  46. 46.
    Battaglia PJ, et al. Posterior, lateral, and anterior hip pain due to musculoskeletal origin: a narrative literature review of history, physical examination, and diagnostic imaging. J Chiro Med. 2016;15(4):281–93.Google Scholar
  47. 47.
    Henry MH, et al. Arthroscopic management of the acromioclavicular joint disorder: a review. Clin Orthop Relat Res. 1995;316:276–83.CrossRefGoogle Scholar
  48. 48.
    Horvath F, Kery L. Degenerative deformations of the acromioclavicular joint in the elderly. Arch Gerontol Geriatr. 1984;3:259–65.PubMedCrossRefGoogle Scholar
  49. 49.
    Bain GI, et al. The long-term efficacy of corticosteroid injection into the acromioclavicular joint using dynamic fluoroscopic method. Int J Shoulder Surgery. 2007;1(4):104–7.CrossRefGoogle Scholar
  50. 50.
    Javed M, et al. Elbow pain: a guide to assessment and management in primary care. Br J Gen Prac. 2015;65(640):610–2.CrossRefGoogle Scholar
  51. 51.
    Travis RD, et al. Tendon rupture about the shoulder. Orthop Clin North Am. 2000;31:313–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Khazzam M, et al. Disorders of the long head of biceps tendon. J Shoulder Elbow Surg. 2012;21(1):136–45.PubMedCrossRefGoogle Scholar
  53. 53.
    Krupp RJ, et al. Long head of the biceps tendon pain: differential diagnosis and treatment. J Orthop Sports Phys Ther. 2009;39(2):55–70.PubMedCrossRefGoogle Scholar
  54. 54.
    Sethi N, et al. Disorders of the long head of the biceps tendon. J Shoulder Elbow Surg. 1999;8:644–54.PubMedCrossRefGoogle Scholar
  55. 55.
    Cook C, et al. Physical exam tests for the shoulder. In: Cook C, Hegedus E, editors. Orthopedic physical examination tests: an evidence based approach. New Jersey: Pearson Prentice Hall; 2008. p. 98–9.Google Scholar
  56. 56.
    Holtby R, Razmjou H. Accuracy of the Speed’s and Yergason’s tests in detecting biceps pathology and SLAP lesions: comparison with arthroscopic findings. Arthroscopy. 2004;20(3):231–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Churgay C. Diagnosis and treatment of biceps tendinitis and tendinosis. Am Fam Physician. 2009;80(5):470–6.PubMedGoogle Scholar
  58. 58.
    Fornalski S, et al. Anatomy and biomechanics of the elbow joint. Sports Med and Arthoscop Rev. 2003;11(1):1–9.CrossRefGoogle Scholar
  59. 59.
    Stroyan M, Wilk K. The functional anatomy of the elbow complex. J Ortho Sports Phys Ther. 1993;17(6):279–88.CrossRefGoogle Scholar
  60. 60.
    Krogh TP, et al. Treatment of lateral epicondylitis with platelet-rich plasma, glucocorticoid, or saline: a randomized, double-blind, placebo-controlled trial. Am J Sports Med. 2013;41(3):625–35.PubMedCrossRefGoogle Scholar
  61. 61.
    Vaquero-Picado A, et al. Lateral epicondylitis of the elbow. EFORT Open Rev. 2016;1(11):391–7.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Eygendaal D, et al. Biomechanics of the elbow joint in tennis players and relation to pathology. Br J Sports Med. 2007;41(11):820–3.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ciccotti MC, et al. Diagnosis and treatment of medial epicondylitis of the elbow. Clin Sports Med. 2004;23(4):693–705.PubMedCrossRefGoogle Scholar
  64. 64.
    Leach RE, Miller JK. Lateral and medial epicondylitis of the elbow. Clin Sports Med. 1987;6:259–72.PubMedGoogle Scholar
  65. 65.
    Galloway M, et al. Rehabilitative techniques in the treatment of medial and lateral epicondylitis. Orthopedics. 1992;15:1089–96.PubMedGoogle Scholar
  66. 66.
    Hadi S, Stanley D. Non-arthroplasty management of the elbow. Ortho Trauma. 2016;30(4):317–21.CrossRefGoogle Scholar
  67. 67.
    Biswas D, et al. Primary and posttraumatic arthritis of the elbow. Arthritis. 2013:473259.Google Scholar
  68. 68.
    Studer A, Athwal G. Rheumatoid arthritis of the elbow. Hand Clin. 2011;27(2):139–50.PubMedCrossRefGoogle Scholar
  69. 69.
    McAfee JH, Smith DL. Olecranon and prepatellar bursitis: diagnosis and treatment. West J Med. 1988;149:607–10.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Quayle JB, Robinson MP. A useful procedure in the treatment of chronic olecranon bursitis. Injury. 1977;9(4):299–302.CrossRefGoogle Scholar
  71. 71.
    Kane SF, et al. Evaluation of elbow pain in adults. Am Fam Physician. 2014;89(8):649–57.PubMedGoogle Scholar
  72. 72.
    Blackwell JR, et al. Olecranon bursitis: a systematic overview. Shoulder Elbow. 2014;6(3):182–90.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Cardone DA, Tallia AF. Diagnostic and therapeutic injection of the elbow region. Am Fam Physician. 2002;66(11):2097–100.PubMedGoogle Scholar
  74. 74.
    Taylor SA, Hannafin JA. Evaluation and management of elbow tendinopathy. Am Orthop Soc Sports Med. 2012;4(5):384–93.Google Scholar
  75. 75.
    Shalom S, et al. The efficacy of an injection of steroids for medial epicondylitis: a prospective study of sixty elbows. JBJS. 1997;79(11):1648–52.CrossRefGoogle Scholar
  76. 76.
    Thanasas C, et al. Platelet-rich plasma versus autologous whole blood for the treatment of chronic lateral elbow epicondylitis: a randomized controlled clinical trial. Am J Sports Med. 2011;39(10):2130–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Singleton MC, LeVeau BF. The hip joint: structure, stability, and stress: a review. PhysTher. 1975;55:957–73.Google Scholar
  78. 78.
    Wilson JJ, Furukawa M. Evaluation of the patient with hip pain. Am Fam Physician. 2014;89(1):27–34.PubMedGoogle Scholar
  79. 79.
    Gold M, Bhimji SS. Anatomy, bony pelvis and lower limb, hip joint. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2018.Google Scholar
  80. 80.
    Annabell L, et al. Hip pathology: the diagnostic accuracy of magnetic resonance imaging. J OrthopSurg Res. 2018;13:127–31.Google Scholar
  81. 81.
    Siopack JS, Jergesen HE. Total hip arthroplasty. West J Med. 1995;162:243–9.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Christmas C, et al. Hoe common is hip pain among older adults? Results from the Third National Health and Nutrition Examination Survey. J Fam Pract. 2002;51(4):345–8.PubMedGoogle Scholar
  83. 83.
    Hopayian K, et al. The clinical features of the piriformis syndrome: a systematic review. Eur Spine J. 2010;19:2095–109.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Freiberg AH, Vinke TH. Sciatica and the sacro-iliac joint. J Bone Joint Surg Am. 1934;16:126–36.Google Scholar
  85. 85.
    Pace JB, Nagle D. Piriform syndrome. West J Med. 1976;124:433–9.Google Scholar
  86. 86.
    Beatty RA. The piriformis muscle syndrome: a simple diagnostic maneuver. Neurosurgery. 1994;34:512–3.PubMedCrossRefGoogle Scholar
  87. 87.
    Smith J, et al. Ultrasound-guided piriformis injection: technique description and verification. Arch Phys Med Rehabil. 2006;87:1664–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Chen C, et al. Ultrasound-guided injection of the piriformis muscle. Am J Phys Med Rehab. 2011;90(10):871–2.CrossRefGoogle Scholar
  89. 89.
    Gollwitzer H, et al. How to address ischiofemoral impingement? Treatment algorithm and review of the literature. J Hip Preserv Surg. 2017;4(4):289–98.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Gomez-Hoyos J, et al. Accuracy of 2 clinical tests for ischiofemoral impingement in patients with posterior hip pain and endoscopically confirmed diagnosis. Arthroscopy. 2016;32(7):1279–84.PubMedCrossRefGoogle Scholar
  91. 91.
    Ali AM, et al. Case report: imaging and surgical treatment of a snapping hip due to ischiofemoral impingement. Skelet Radiol. 2011;40:653–6.CrossRefGoogle Scholar
  92. 92.
    Volokhina Y, Dang D. Using proximal hamstring tendons as a landmark for ultrasound- and CT-guided injections of ischiofemoral impingement. Radiol Case Rep. 2013;8(1):789–93.PubMedCrossRefGoogle Scholar
  93. 93.
    Wilson MD, Keene JS. Treatment of ischiofemoral impingement: results of diagnostic injections and arthroscopic resection of the lesser trochanter. J Hip Preservation Surg. 2016;3(2):146–53.CrossRefGoogle Scholar
  94. 94.
    Hugo D, Jongh de HR. Greater trochanteric pain syndrome. SA Orthop J. 2012;11:28–33.Google Scholar
  95. 95.
    Lewis C. Extra-articular snapping hip: a literature review. Athl Train. 2010;2:186–90.Google Scholar
  96. 96.
    Yen Y, et al. Understanding and treating the snapping hip. Sports Med Arthrosc. 2015;23(4):194–9.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Reid D. The management of greater trochanteric pain syndrome: a systematic literature review. J Orthop. 2016;13:15–28.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Brooker AJ. The surgical approach to refractory trochanteric bursitis. Johns Hopkins Med J. 1979;145:98–100.PubMedGoogle Scholar
  99. 99.
    Brinks A, et al. Corticosteroid injections for greater trochanteric pain syndrome: a randomized controlled trial in primary care. Ann Fam Med. 2011;9:226–34.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Cardone DA, Tallia AF. Diagnostic and therapeutic injection of the hip and knee. Am Fam Physician. 2003;67(10):2147–52.PubMedGoogle Scholar
  101. 101.
    Hutton CW. Osteoarthritis: the cause not result of joint failure? Ann Rheum Dis. 1989;48(11):958–61.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Altman R, et al. The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hip. Arthritis Rheum. 1991;34(5):505–14.PubMedCrossRefGoogle Scholar
  103. 103.
    Murphy N, et al. Hip osteoarthritis: etiopathogenesis and implications for management. AdvTher. 2016;33:1921–46.Google Scholar
  104. 104.
    Hochberg MC, et al. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res. 2012;64(4):465–74.CrossRefGoogle Scholar
  105. 105.
    Anderson ES, et al. Ultrasound-guided intraarticular hip injection for osteoarthritis pain in the emergency department. West J Emerg Med. 2013;14(5):505–8.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Giordano BD. Comparison of two injection techniques for intra-articular hip injections. J Ultrasound Med. 2016;35:1259–67.PubMedCrossRefGoogle Scholar
  107. 107.
    Groh M, Herrera J. A comprehensive review of hip labral tears. Curr Rev Musculoskelet Med. 2009;2:105–17.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Lage LA, et al. The acetabular labral tear: an arthroscopic classification. Arthroscopy. 1996;12:269–72.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Narvani AA, et al. Acetabulum labrum and its tears. Brit J Sports Med. 2003;37(3):207–11.CrossRefGoogle Scholar
  110. 110.
    Nafa WB. Management of hip labral tears in athletes: an evidence-based review of the literature. J Phy Fit Treat Sports. 2018;4(3):555636.Google Scholar
  111. 111.
    Krych AJ, et al. Limited therapeutic benefits of intra-articular cortisone injection for patients with femoro-acetabular impingement and labral tear. Knee Surg Sports Traumatol Athrosc. 2014;22(4):750–5.CrossRefGoogle Scholar
  112. 112.
    Byrne PA, et al. Iliopsoas bursitis-an unusual presentation of metastatic bone disease. Br J Rheumatol. 1996;35(3):285–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Johnston CAM, et al. Iliopsoas bursitis and tendonitis: a review. Sports Med. 1998;25:271–83.PubMedCrossRefGoogle Scholar
  114. 114.
    Di Carlo M, et al. An unusual association: iliopsoas bursitis related to calcium pyrophosphate crystal arthritis. Case Rep Rheumatol. 2015; 5 pages.Google Scholar
  115. 115.
    Adler RS, et al. Diagnostic and therapeutic use of sonography-guided iliopsoas peritendinous injections. Musculoskelet Imaging. 2005;185:940–3.Google Scholar
  116. 116.
    Adler RS, Finzel KC. The complementary roles of MR imaging and ultrasound of tendons. Radiol Clin North Am. 2005;43(4):771–804.PubMedCrossRefGoogle Scholar
  117. 117.
    Maher P, et al. Technique for fluoroscopically guided injection for iliopsoas bursitis. Am J Phys Med Rehabil. 2014;93(12):1105–6.PubMedCrossRefGoogle Scholar
  118. 118.
    Abulhasan JF, Grey MJ. Anatomy and physiology of knee stability. J Funct Morph Kinesiol. 2017;2(4):34.CrossRefGoogle Scholar
  119. 119.
    Whitesides TE. Orthopaedic basic science: biology and biomechanics of the musculoskeletal system, vol. 83. 2nd ed. Rosemont: American Academy of Orthopaedic Surgeons; 2001. p. 481.Google Scholar
  120. 120.
    Loudan JK. Biomechanics and pathomechanics of the patellofemoral joint. Int J Sports Phys Ther. 2016;11(6):820–30.Google Scholar
  121. 121.
    Muller W. Form and function of the knee – its relation to high performance and to sports. Am J Sports Med. 1996;24:S104–6.PubMedCrossRefGoogle Scholar
  122. 122.
    Hastings DE. Diagnosis and management of acute knee ligament injuries. Can Fam Physician. 1990;36:1169–72.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Fox AJ, et al. The basic science of human knee menisci: structure, composition, and function. Sports Health. 2012;4(4):340–51.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Bunt CW, et al. Knee pain in adults and adolescents: the initial evaluation. Am Fam Phys. 2018;98(9):576–85.Google Scholar
  125. 125.
    Farrokhi S, et al. The influence of knee pain location on symptoms, functional status and knee-related quality of life in older adults with chronic knee pain: data from the Osteoarthritis Initiative. Clin J Pain. 2016;32(6):463–70.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Lawrence RC, et al. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum. 1998;41:778–99.PubMedCrossRefGoogle Scholar
  127. 127.
    Cooper C, et al. Risk factors for the incidence and progression of radiographic knee osteoarthritis. Arthritis Rheum. 2000;43(5):995–1000.PubMedCrossRefGoogle Scholar
  128. 128.
    Felson DT, et al. Weight loss reduces the risk for symptomatic knee osteoarthritis in women: the Framingham study. Ann Intern Med. 1992;116(7):535–9.PubMedCrossRefGoogle Scholar
  129. 129.
    Hayes CW, et al. Mechanism-based pattern approach to classification of complex injuries to the knee depicted at MR imaging. Radio Graph. 2000;20:S121–34.Google Scholar
  130. 130.
    Logerstedt D, et al. Knee pain and mobility impairments: meniscal and articular cartilage lesions. J Orthop Sports PhysTher. 2010;40(6):A1–35.CrossRefGoogle Scholar
  131. 131.
    Kohn MD, et al. Classifications in brief: Kellgren-Lawrence classification in osteoarthritis. Clin Orthop Relat Res. 2016;474:1886–93.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Kellgren JH, Lawrence JS. Radiological assessment of osteoarthrosis. Ann Rheum Dis. 1957;16:494–502.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Rossi R, et al. Clinical examination of the knee: know your tools for diagnosis of knee injuries. Sports Med Arthrosc Rehab Ther Tech. 2011;3:25.CrossRefGoogle Scholar
  134. 134.
    Brattstroem H. Shape of the intercondylar groove normally and in recurrent dislocation of the patella. Acta Orthop Scand Suppl. 1964;68:1–148.CrossRefGoogle Scholar
  135. 135.
    Heino BJ, Powers CM. Patellofemoral stress during walking in persons with and without patellofemoral pain. Med Sci Sports Exer. 2002;34(10):1582–93.CrossRefGoogle Scholar
  136. 136.
    Walsh WM. Recurrent dislocation of the knee in the adult. In: DeLee JC, Drez D, Miller MD, editors. Orthopaedic sports medicine: principles and practice. 2nd ed. Philadephia: Saunders; 2003. p. 1718–21.Google Scholar
  137. 137.
    Fulkerson JP, et al. Patellofemoral pain. AAOS Instr Course Lect. 1995;41:57–71.Google Scholar
  138. 138.
    Katchburian MV, et al. Measurement of patellar tracking: assessment and analysis of the literature. Clin Orthop Relat Res. 2003;412:241–59.CrossRefGoogle Scholar
  139. 139.
    Post WR. Clinical evaluation of patients with patellofemoral disorders. Arthroscopy. 1999;15:841–51.PubMedCrossRefGoogle Scholar
  140. 140.
    McMurray TP. The diagnosis of internal derangements of the knee, a collection of essays. Oxford: Humphrey Milford Oxford Press; 1928. p. 301–6.Google Scholar
  141. 141.
    Apley G. Diagnosis of meniscus injuries. J Bone Joint Surg. 1947;29A:79–84.Google Scholar
  142. 142.
    Harrison BK, et al. The Thessaly test for detection of meniscal tears: validation of a new physical examination technique in primary care medicine. Clin J Sports Med. 2009;19(1):9–12.CrossRefGoogle Scholar
  143. 143.
    Lubowitz JH, et al. Comprehensive physical examination for instability of the knee. Am J Sports Med. 2008;36(3):577–94.PubMedCrossRefGoogle Scholar
  144. 144.
    Hughston JC, et al. Classification of knee ligament instabilities. Part I. The medial compartment and cruciate ligaments. J Bone Joint Surg Am. 1976;58:159–72.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    LaPrade RF, Terry GC. Injuries to the posterolateral aspect of the knee: association of anatomic injury patterns with clinical instability. Am J Sports Med. 1997;24:433–8.CrossRefGoogle Scholar
  146. 146.
    Bendjaballah MZ, et al. Finite element analysis of human knee joint in varus-valgus. ClinBiomech. 1997;12(3):139–48.Google Scholar
  147. 147.
    Torg JS, et al. Clinical diagnosis of anterior cruciate ligament instability in the athlete. Am J Sports Med. 1976;4:84–93.PubMedCrossRefGoogle Scholar
  148. 148.
    Bellamy N, et al. Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst Rev. 2005;2:CD005321.Google Scholar
  149. 149.
    Anitua E, et al. Platelet-released growth factors enhance the secretion of hyaluronic acid and induce hepatocyte growth factor production by synovial fibroblasts from arthritis patients. Rheum. 2007;46:1769–72.CrossRefGoogle Scholar
  150. 150.
    Huang G, et al. Platelet-rich plasma shows beneficial effects for patients with knee osteoarthritis by suppressing inflammatory factors. Exp Therap Med. 2018;15:3096–102.Google Scholar
  151. 151.
    Uth K, Trifonov D. Stem cell application for osteoarthritis in the knee joint: a minireview. World J Stem Cells. 2014;6(5):629–36.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Pas HIMFL, et al. Stem cell injections in knee osteoarthritis: a systematic review. Br J Sports Med. 2017;51:1125–33.PubMedCrossRefGoogle Scholar
  153. 153.
    Maricar N, et al. Where and how to inject the knee – a systematic review. Semin Arthritis Rheum. 2013;43(2):195–203.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Zuber TJ. Knee joint aspiration and injection. Am Fam Phys. 2002;66(8):1497–500.Google Scholar
  155. 155.
    Wong CSM, Wong SHS. A new look at trigger point injections. Anes Res Pract. 2012;2012:492452.Google Scholar
  156. 156.
    Simons DG, et al. Travell & Simons’ myofascial pain and dysfunction: the trigger point manual. 2nd ed. Baltimore: Williams & Wilkins; 1999. p. 11–93.Google Scholar
  157. 157.
    Hong CZ, Hsueh TC. Difference in pain relief after trigger point injections in myofascial pain patients with and without fibromyalgia. Arch Phys Med Rehabil. 1996;77:1161–6.PubMedCrossRefGoogle Scholar
  158. 158.
    Shah J, et al. Myofascial trigger points then and now: a historical and scientific perspective. PM R. 2015;7(7):746–61.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Jafri MS. Mechanisms of myofascial pain. Int Sch Res Not. 2014:523924.Google Scholar
  160. 160.
    Bullock JD. Relative afferent pupillary defect in the better eye. J Clin Neuro-Ophthalmol. 1990;10(1):45–51.CrossRefGoogle Scholar
  161. 161.
    Alvarez DJ, Rockwell PG. Trigger points: diagnosis and management. Am Fam Physician. 2002;65(4):653–61.PubMedGoogle Scholar
  162. 162.
    Celik D, Mutlu EK. Clinical implication of latent myofascial trigger point. Curr Pain Headache Rep. 2013;17(8):353.PubMedCrossRefGoogle Scholar
  163. 163.
    Rivers WE, et al. Signs and symptoms of myofascial pain: an international survey of pain management providers and proposed preliminary set of diagnostic criteria. Pain Med. 2015;16:1794–805.PubMedCrossRefGoogle Scholar
  164. 164.
    Arroll B, Goodyear-Smith F. Corticosteroid injections for painful shoulder: a meta-analysis. Brit J Gen Prac. 2005;55:224–8.Google Scholar
  165. 165.
    Hong CZ. Lidocaine injection versus dry needling to myofascial trigger point. The importance of the local twitch response. Am J Phys Med Rehabil. 1994;73:256–63.PubMedCrossRefGoogle Scholar
  166. 166.
    Ali M, et al. The use of platelet-rich plasma in the treatment of greater trochanteric pain syndrome: a systematic literature review. J Hip Preserv Surg. 2018;5(3):209–19.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Gosens T, et al. Ongoing positive effects of platelet-rich plasma versus corticosteroid injection in lateral epicondylitis: a double-blind randomized controlled trial with 2-year follow-up. Am J Sports Med. 2011;39(6):1200–8.PubMedCrossRefGoogle Scholar
  168. 168.
    Iijima H, et al. Effectiveness of mesenchymal stem cells for treating patients with knee osteoarthritis: a meta-analysis toward the establishment of effective regenerative rehabilitation. Regen Med. 2018;3:15.Google Scholar
  169. 169.
    Koh YG, et al. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthroscopy J Arthroscopic Related Surg. 2013;29(4):748–55.CrossRefGoogle Scholar
  170. 170.
    Monto RR. Platelet-rich plasms efficacy versus corticosteroid injection treatment for chronic severe plantar fasciitis. Foot Ankle Int. 2014;35(4):313–8.PubMedCrossRefGoogle Scholar
  171. 171.
    Raeissadat SA, et al. Knee osteoarthritis injection choices: platelet-rich plasma (PRP) versus hyaluronic acid (a one-year randomized clinical trial). Clin Med: Arthritis Musculoskelet Disord. 2014;8:1–8.Google Scholar
  172. 172.
    Rha D, et al. Comparison of the therapeutic effects of ultrasound-guided platelet-rich plasma injection and dry needling in rotator cuff disease: a randomized controlled trial. Clinical Rehabil. 2013;27(2):113–22.CrossRefGoogle Scholar
  173. 173.
    Scarpone M, et al. Effectiveness of platelet-rich plasma injection in rotator cuff tendinopathy: a prospective open-label study. Glob Adv Health Med. 2013;2(2):26–31.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Shams A, et al. Subacromial injection of autologous platelet-rich plasma versus corticosteroid for the treatment of symptomatic partial rotator cuff tears. Eur J Orthop Surg Traumatol. 2016;26(8):837–42.PubMedCrossRefGoogle Scholar
  175. 175.
    Spakova T, et al. Treatment of knee joint osteoarthritis with autologous platelet-rich plasma in comparison with hyaluronic acid. Am J Phys Med Rehabil. 2012;91(5):411–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Physical Medicine and RehabilitationUT Southwestern Medical CenterDallasUSA

Personalised recommendations