The Future of Pain Therapeutics

  • Candler Paige
  • Stephanie Shiers
  • Theodore J. PriceEmail author


New chronic pain therapeutics are desperately needed, as many current treatments do not adequately treat pain in many patients. Ongoing preclinical research has found promising new techniques to better diagnose pain mechanisms and to treat pain. In this chapter we will focus on cutting edge technologies that show the most promise to provide relief for the millions of chronic pain patients seeking treatment. The chapter will cover the potential for the emergence of new pharmaceuticals, implanted devices, genetic therapies, and behavioral modifications that may well be available in the coming years.


Optogenetics NGF Chemogenetics Gene therapy CGRP Nociceptor 


  1. 1.
    Smith SM, Dworkin RH, Turk DC, Baron R, Polydefkis M, Tracey I, Borsook D, Edwards RR, Harris RE, Wager TD, Arendt-Nielsen L, Burke LB, Carr DB, Chappell A, Farrar JT, Freeman R, Gilron I, Goli V, Haeussler J, Jensen T, Katz NP, Kent J, Kopecky EA, Lee DA, Maixner W, Markman JD, McArthur JC, McDermott MP, Parvathenani L, Raja SN, Rappaport BA, Rice ASC, Rowbotham MC, Tobias JK, Wasan AD, Witter J. The potential role of sensory testing, skin biopsy, and functional brain imaging as biomarkers in chronic pain clinical trials: IMMPACT considerations. J Pain. 2017;18(7):757–77.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Backonja MM, Attal N, Baron R, Bouhassira D, Drangholt M, Dyck PJ, Edwards RR, Freeman R, Gracely R, Haanpaa MH, Hansson P, Hatem SM, Krumova EK, Jensen TS, Maier C, Mick G, Rice AS, Rolke R, Treede R-D, Serra J, Toelle T, Tugnoli V, Walk D, Walalce MS, Ware M, Yarnitsky D, Ziegler D. Value of quantitative sensory testing in neurological and pain disorders: NeuPSIG consensus. Pain. 2013;154(9):1807–19. PMID: 23742795.PubMedCrossRefGoogle Scholar
  3. 3.
    Max MB. Towards physiologically based treatment of patients with neuropathic pain. Pain. 1990;42(2):131–7. PMID: 1701044.PubMedCrossRefGoogle Scholar
  4. 4.
    Fillingim RB, Loeser JD, Baron R, Edwards RR. Assessment of chronic pain: domains, methods, and mechanisms. J Pain Off J Am Pain Soc. 2016;17(9 Suppl):T10–20. PMCID: PMC5010652.CrossRefGoogle Scholar
  5. 5.
    Baron M, Veres A, Wolock SL, Faust AL, Gaujoux R, Vetere A, Ryu JH, Wagner BK, Shen-Orr SS, Klein AM, Melton DA, Yanai IA. Single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst. 2016;3(4):346–360.e4.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    McCarthy BG, Hsieh ST, Stocks A, Hauer P, Macko C, Cornblath DR, Griffin JW, McArthur JC. Cutaneous innervation in sensory neuropathies: evaluation by skin biopsy. Neurology. 1995;45(10):1848–55. PMID: 7477980.PubMedCrossRefGoogle Scholar
  7. 7.
    Lauria G, Bakkers M, Schmitz C, Lombardi R, Penza P, Devigili G, Smith AG, Hsieh S-T, Mellgren SI, Umapathi T, Ziegler D, Faber CG, Merkies ISJ. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst JPNS. 2010;15(3):202–7. PMID: 21040142.PubMedCrossRefGoogle Scholar
  8. 8.
    Novella SP, Inzucchi SE, Goldstein JM. The frequency of undiagnosed diabetes and impaired glucose tolerance in patients with idiopathic sensory neuropathy. Muscle Nerve. 2001;24(9):1229–31. PMID: 11494278.PubMedCrossRefGoogle Scholar
  9. 9.
    Chao C-C, Huang C-M, Chiang H-H, Luo K-R, Kan H-W, Yang NC-C, Chiang H, Lin W-M, Lai S-M, Lee M-J, Shun C-T, Hsieh S-T. Sudomotor innervation in transthyretin amyloid neuropathy: pathology and functional correlates. Ann Neurol. 2015;78(2):272–83. PMCID: PMC5034810.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Burakgazi AZ, Messersmith W, Vaidya D, Hauer P, Hoke A, Polydefkis M. Longitudinal assessment of oxaliplatin-induced neuropathy. Neurology. 2011;77(10):980–6. PMCID: PMC3171958.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Oaklander AL, Herzog ZD, Downs HM, Klein MM. Objective evidence that small-fiber polyneuropathy underlies some illnesses currently labeled as fibromyalgia. Pain. 2013;154(11):2310–6. PMCID: PMC3845002.PubMedCrossRefGoogle Scholar
  12. 12.
    Reddan MC, Wager TD. Modeling pain using fMRI: from regions to biomarkers. Neurosci Bull. 2018;34(1):208–15.PubMedCrossRefGoogle Scholar
  13. 13.
    Younger JW, Shen YF, Goddard G, Mackey SC. Chronic myofascial temporomandibular pain is associated with neural abnormalities in the trigeminal and limbic systems. Pain. 2010;149(2):222–8.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Schmidt-Wilcke T, Luerding R, Weigand T, Jürgens T, Schuierer G, Leinisch E, Bogdahn U. Striatal grey matter increase in patients suffering from fibromyalgia – a voxel-based morphometry study. Pain. 2007;132:S109–16.PubMedCrossRefGoogle Scholar
  15. 15.
    Martucci KT, Ng P, Mackey S. Neuroimaging chronic pain: what have we learned and where are we going? Future Neurol. 2014;9(6):615–26.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Seminowicz DA, Wideman TH, Naso L, Hatami-Khoroushahi Z, Fallatah S, Ware MA, Jarzem P, Bushnell MC, Shir Y, Ouellet JA, Stone LS. Effective treatment of chronic low Back pain in humans reverses abnormal brain anatomy and function. J Neurosci. 2011;31(20):7540–50.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Bennett DLH, Woods CG. Painful and painless channelopathies. Lancet Neurol. 2014;13(6):587–99.PubMedCrossRefGoogle Scholar
  18. 18.
    Faber CG, Hoeijmakers JGJ, Ahn H-S, Cheng X, Han C, Choi J-S, Estacion M, Lauria G, Vanhoutte EK, Gerrits MM, Dib-Hajj S, Drenth JPH, Waxman SG, Merkies ISJ. Gain of function NaV1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol. 2012;71(1):26–39.PubMedCrossRefGoogle Scholar
  19. 19.
    Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G, Jafri H, Mannan J, Raashid Y, Al-Gazali L, Hamamy H, Valente EM, Gorman S, Williams R, McHale DP, Wood JN, Gribble FM, Woods CG. An SCN9A channelopathy causes congenital inability to experience pain. Nature. 2006;444(7121):894–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Blesneac I, Themistocleous AC, Fratter C, Conrad LJ, Ramirez JD, Cox JJ, Tesfaye S, Shillo PR, Rice ASC, Tucker SJ, Bennett DLH. Rare Nav1.7 variants associated with painful diabetic peripheral neuropathy. Pain. 2017;159:469–80.PubMedCentralCrossRefGoogle Scholar
  21. 21.
    Suri P, Palmer MR, Tsepilov YA, Freidin MB, Boer CG, Yau MS, Evans DS, Gelemanovic A, Bartz TM, Nethander M, Arbeeva L, Karssen L, Neogi T, Campbell A, Mellstrom D, Ohlsson C, Marshall LM, Orwoll E, Uitterlinden A, Rotter JI, Lauc G, Psaty BM, Karlsson MK, Lane NE, Jarvik GP, Polasek O, Hochberg M, Jordan JM, Van Meurs JBJ, Jackson R, Nielson CM, Mitchell BD, Smith BH, Hayward C, Smith NL, Aulchenko YS, Williams FMK. Genome-wide meta-analysis of 158,000 individuals of European ancestry identifies three loci associated with chronic back pain. Loos RJF, editor. PLOS Genet. 2018;14(9):e1007601.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Paul JA, Aich A, Abrahante JE, Wang Y, LaRue RS, Rathe SK, Kalland K, Mittal A, Jha R, Peng F, Largaespada DA, Bagchi A, Gupta K. Transcriptomic analysis of gene signatures associated with sickle pain. Sci Data. 2017;16(4):170051. PMCID: PMC5749120.CrossRefGoogle Scholar
  23. 23.
    Ray P, Torck A, Quigley L, Wangzhou A, Neiman M, Rao C, Lam T, Kim J-Y, Kim TH, Zhang MQ, Dussor G, Price TJ. Comparative transcriptome profiling of the human and mouse dorsal root ganglia: an RNA-seq–based resource for pain and sensory neuroscience research. Pain. 2018;159(7):1325–45.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J, Häring M, Braun E, Borm LE, La Manno G, Codeluppi S, Furlan A, Lee K, Skene N, Harris KD, Hjerling-Leffler J, Arenas E, Ernfors P, Marklund U, Linnarsson S. Molecular architecture of the mouse nervous system. Cell. 2018;174(4):999–1014.e22.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Sorge RE, Totsch SK. Sex differences in pain: sex differences in pain. J Neurosci Res [Internet]. 2016. [cited 2016 Nov 20]; Available from: Scholar
  26. 26.
    Sorge RE, LaCroix-Fralish ML, Tuttle AH, Sotocinal SG, Austin J-S, Ritchie J, Chanda ML, Graham AC, Topham L, Beggs S, Salter MW, Mogil JS. Spinal cord toll-like receptor 4 mediates inflammatory and neuropathic hypersensitivity in male but not female mice. J Neurosci. 2011;31(43):15450–4. PMCID: PMC3218430.PubMedCrossRefGoogle Scholar
  27. 27.
    Taves S, Berta T, Liu D-L, Gan S, Chen G, Kim YH, Van de Ven T, Laufer S, Ji R-R. Spinal inhibition of p38 MAP kinase reduces inflammatory and neuropathic pain in male but not female mice: sex-dependent microglial signaling in the spinal cord. Brain Behav Immun. 2016;55:70–81.PubMedCrossRefGoogle Scholar
  28. 28.
    Paige C, Maruthy GB, Mejia G, Dussor G, Price T. Spinal inhibition of P2XR or p38 signaling disrupts hyperalgesic priming in male, but not female. Mice Neurosci. 2018;385:133–42.CrossRefGoogle Scholar
  29. 29.
    Inyang KE, Szabo-Pardi T, Wentworth E, McDougal TA, Dussor G, Burton MD, Price TJ. The antidiabetic drug metformin prevents and reverses neuropathic pain and spinal cord microglial activation in male but not female mice. Pharmacol Res. 2019;139:1–16.PubMedCrossRefGoogle Scholar
  30. 30.
    Sorge RE, Mapplebeck JCS, Rosen S, Beggs S, Taves S, Alexander JK, Martin LJ, Austin J-S, Sotocinal SG, Chen D, Yang M, Shi XQ, Huang H, Pillon NJ, Bilan PJ, Tu Y, Klip A, Ji R-R, Zhang J, Salter MW, Mogil JS. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci. 2015;18(8):1081–3.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Krukowski K, Eijkelkamp N, Laumet G, Hack CE, Li Y, Dougherty PM, Heijnen CJ, Kavelaars A. CD8+ T cells and endogenous IL-10 are required for resolution of chemotherapy-induced neuropathic pain. J Neurosci. 2016;36(43):11074–83.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ma J, Kavelaars A, Dougherty PM, Heijnen CJ. Beyond symptomatic relief for chemotherapy-induced peripheral neuropathy: targeting the source: novel therapeutic strategies for CIPN. Cancer. 2018;124(11):2289–98.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Skolnick P, Volkow ND. Re-energizing the development of pain therapeutics in light of the opioid epidemic. Neuron. 2016;92(2):294–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Goadsby PJ, Reuter U, Hallström Y, Broessner G, Bonner JH, Zhang F, Sapra S, Picard H, Mikol DD, Lenz RA. A controlled trial of erenumab for episodic migraine. N Engl J Med. 2017;377(22):2123–32.PubMedCrossRefGoogle Scholar
  35. 35.
    Dodick D, Goadsby P, Silberstein S, Lipton R, Hirman J, Randomized SJ. Double-blind, placebo-controlled trial of ALD403, an anti-CGRP peptide antibody in the prevention of chronic migraine. (S52.003). Neurology. 2017;88(16 Supplement):S52.003.Google Scholar
  36. 36.
    Dodick DW, Goadsby PJ, Spierings ELH, Scherer JC, Sweeney SP, Grayzel DS. Safety and efficacy of LY2951742, a monoclonal antibody to calcitonin gene-related peptide, for the prevention of migraine: a phase 2, randomised, double-blind, placebo-controlled study. Lancet Neurol. 2014;13(9):885–92.PubMedCrossRefGoogle Scholar
  37. 37.
    Bigal ME, Walter S, Rapoport AM. Therapeutic antibodies against CGRP or its receptor: antibodies anti-CGRP. Br J Clin Pharmacol. 2015;79(6):886–95.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Patel MK, Kaye AD, Tanezumab URD. Therapy targeting nerve growth factor in pain pathogenesis. J Anaesthesiol Clin Pharmacol. 2018;34(1):111–6. PMCID: PMC5885425.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Miller RE, Malfait A-M, Block JA. Current status of nerve growth factor antibodies for the treatment of osteoarthritis pain. Clin Exp Rheumatol. 2017;35 Suppl 107(5):85–7. PMCID: PMC6007861.PubMedGoogle Scholar
  40. 40.
    Lee J-H, Park C-K, Chen G, Han Q, Xie R-G, Liu T, Ji R-R, Lee S-Y. A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief. Cell. 2014;157(6):1393–404. PMCID: PMC4098795.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Goldberg YP, Price N, Namdari R, Cohen CJ, Lamers MH, Winters C, Price J, Young CE, Verschoof H, Sherrington R, Pimstone SN, Hayden MR. Treatment of Nav1.7-mediated pain in inherited erythromelalgia using a novel sodium channel blocker. Pain. 2012;153(1):80–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Payne CE, Brown AR, Theile JW, Loucif AJC, Alexandrou AJ, Fuller MD, Mahoney JH, Antonio BM, Gerlach AC, Printzenhoff DM, Prime RL, Stockbridge G, Kirkup AJ, Bannon AW, England S, Chapman ML, Bagal S, Roeloffs R, Anand U, Anand P, Bungay PJ, Kemp M, Butt RP, Stevens EB. A novel selective and orally bioavailable Nav 1.8 channel blocker, PF-01247324, attenuates nociception and sensory neuron excitability. Br J Pharmacol. 2015;172(10):2654–70. PMCID: PMC4409913.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Salvemini D, Little JW, Doyle T, Neumann WL. Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med. 2011;51(5):951–66. PMCID: PMC3134634.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Niwa Y, Somiya K, Michelson AM, Puget K. Effect of liposomal-encapsulated superoxide dismutase on active oxygen-related human disorders. A preliminary study. Free Radic Res Commun. 1985;1(2):137–53. PMID: 3880279.PubMedCrossRefGoogle Scholar
  45. 45.
    Linn AJ, Steinbrook RA. Peripherally restricted μ-opioid receptor antagonists: a review. Tech Reg Anesth Pain Manag. 2007;11(1):27–32.CrossRefGoogle Scholar
  46. 46.
    PJ-M R. Peripheral kappa-opioid agonists for visceral pain. Br J Pharmacol. 2004;141(8):1331–4.CrossRefGoogle Scholar
  47. 47.
    Leone P, Shera D, McPhee SWJ, Francis JS, Kolodny EH, Bilaniuk LT, Wang D-J, Assadi M, Goldfarb O, Goldman HW, Freese A, Young D, During MJ, Samulski RJ, Janson CG. Long-term follow-up after gene therapy for canavan disease. Sci Transl Med. 2012;4(165):165ra163.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Iwai Y, Honda S, Ozeki H, Hashimoto M, Hirase H. A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci Res. 2011;70(1):124–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Wentz CT, Bernstein JG, Monahan P, Guerra A, Rodriguez A, Boyden ES. A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J Neural Eng. 2011;8(4):046021.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Montgomery KL, Yeh AJ, Ho JS, Tsao V, Mohan Iyer S, Grosenick L, Ferenczi EA, Tanabe Y, Deisseroth K, Delp SL, Poon ASY. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat Methods. 2015;12(10):969–74.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Park SI, Brenner DS, Shin G, Morgan CD, Copits BA, Chung HU, Pullen MY, Noh KN, Davidson S, Oh SJ, Yoon J, Jang K-I, Samineni VK, Norman M, Grajales-Reyes JG, Vogt SK, Sundaram SS, Wilson KM, Ha JS, Xu R, Pan T, Kim T, Huang Y, Montana MC, Golden JP, Bruchas MR, Gereau RW, Rogers JA. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat Biotechnol. 2015;33(12):1280–6.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Mickle AD, Won SM, Noh KN, Yoon J, Meacham KW, Xue Y, McIlvried LA, Copits BA, Samineni VK, Crawford KE, Kim DH, Srivastava P, Kim BH, Min S, Shiuan Y, Yun Y, Payne MA, Zhang J, Jang H, Li Y, Lai HH, Huang Y, Park S-I, Gereau RW, Rogers JA. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature. 2019;565(7739):361–5.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Ji Z-G, Ito S, Honjoh T, Ohta H, Ishizuka T, Fukazawa Y, Yawo H. Light-evoked somatosensory perception of transgenic rats that express channelrhodopsin-2 in dorsal root ganglion cells. PLoS ONE. 2012;7(3):e32699. Baccei ML, editor.Google Scholar
  54. 54.
    Daou I, Tuttle AH, Longo G, Wieskopf JS, Bonin RP, Ase AR, Wood JN, De Koninck Y, Ribeiro-da-Silva A, Mogil JS, Seguela P. Remote Optogenetic activation and sensitization of pain pathways in freely moving mice. J Neurosci. 2013;33(47):18631–40.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Iyer SM, Montgomery KL, Towne C, Lee SY, Ramakrishnan C, Deisseroth K, Delp SL. Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat Biotechnol. 2014;32(3):274–8.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Cowie AM, Moehring F, O’Hara C, Stucky CL. Optogenetic inhibition of CGRPα sensory neurons reveals their distinct roles in neuropathic and incisional pain. J Neurosci. 2018;38(25):5807–25.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Li B, Yang X, Qian F, Tang M, Ma C, Chiang L-Y. A novel analgesic approach to optogenetically and specifically inhibit pain transmission using TRPV1 promoter. Brain Res. 2015;1609:12–20.PubMedCrossRefGoogle Scholar
  58. 58.
    Roth BL. DREADDs for neuroscientists. Neuron. 2016;89(4):683–94.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Sluka KA, Frey-Law L, Hoeger Bement M. Exercise-induced pain and analgesia? Underlying mechanisms and clinical translation. Pain. 2018;159:S91–7.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Grace PM, Fabisiak TJ, Green-Fulgham SM, Anderson ND, Strand KA, Kwilasz AJ, Galer EL, Walker FR, Greenwood BN, Maier SF, Fleshner M, Watkins LR. Prior voluntary wheel running attenuates neuropathic pain. Pain. 2016;157(9):2012–23.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Dailey DL, Rakel BA, Vance CGT, Liebano RE, Amrit AS, Bush HM, Lee KS, Lee JE, Sluka KA. Transcutaneous electrical nerve stimulation reduces pain, fatigue and hyperalgesia while restoring central inhibition in primary fibromyalgia. Pain. 2013;154(11):2554–62. PMCID: PMC3972497.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Sampey BP, Freemerman AJ, Zhang J, Kuan P-F, Galanko JA, O’Connell TM, Ilkayeva OR, Muehlbauer MJ, Stevens RD, Newgard CB, Brauer HA, Troester MA, Makowski L. Metabolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation. PLoS ONE. 2012;7(6):e38812. Aguila MB, editor.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Totsch SK, Waite ME, Tomkovich A, Quinn TL, Gower BA, Sorge RE. Total Western diet alters mechanical and thermal sensitivity and prolongs hypersensitivity following complete Freund’s adjuvant in mice. J Pain Off J Am Pain Soc. 2016;17(1):119–25. PMCID: PMC4817348.CrossRefGoogle Scholar
  64. 64.
    Nagareddy PR, Kraakman M, Masters SL, Stirzaker RA, Gorman DJ, Grant RW, Dragoljevic D, Hong ES, Abdel-Latif A, Smyth SS, Choi SH, Korner J, Bornfeldt KE, Fisher EA, Dixit VD, Tall AR, Goldberg IJ, Murphy AJ. Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metab. 2014;19(5):821–35.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Towery P, Guffey JS, Doerflein C, Stroup K, Saucedo S, Taylor J. Chronic musculoskeletal pain and function improve with a plant-based diet. Complement Ther Med. 2018;40:64–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Silva AR, Bernardo A, Costa J, Cardoso A, Santos P, de Mesquita MF, Vaz Patto J, Moreira P, Silva ML, Padrão P. Dietary interventions in fibromyalgia: a systematic review. Ann Med. 2019;8:1–29.Google Scholar
  67. 67.
    Zeidan F, Vago DR. Mindfulness meditation-based pain relief: a mechanistic account. Ann N Y Acad Sci. 2016;1373(1):114–27. PMCID: PMC4941786.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lutz A, McFarlin DR, Perlman DM, Salomons TV, Davidson RJ. Altered anterior insula activation during anticipation and experience of painful stimuli in expert meditators. NeuroImage. 2013;64:538–46. PMCID: PMC3787201.PubMedCrossRefGoogle Scholar
  69. 69.
    Taylor SL, Herman PM, Marshall NJ, Zeng Q, Yuan A, Chu K, Shao Y, Morioka C, Lorenz KA. Use of complementary and integrated health: a retrospective analysis of U.S. veterans with chronic musculoskeletal pain nationally. J Altern Complement Med. 2019;25(1):32–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Devan H, Farmery D, Peebles L, Grainger R. Evaluation of self-management support functions in apps for people with persistent pain: systematic review. JMIR MHealth UHealth. 2019;7(2):e13080. PMID: 30747715.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096–1258096.CrossRefGoogle Scholar
  72. 72.
    Dzau VJ, McNutt M, Bai C. Wake-up call from Hong Kong. Science. 2018;362(6420):1215–1215.CrossRefGoogle Scholar
  73. 73.
    Wang H, Li J, Li W, Gao C, Wei W. CRISPR twins: a condemnation from Chinese academic societies. Nature. 2018;564(7736):345–345.CrossRefGoogle Scholar
  74. 74.
    Sun L, Lutz BM, Tao Y-X. The CRISPR/Cas9 system for gene editing and its potential application in pain research. Transl Perioper Pain Med. 2016;1(3):22–33. PMCID: PMC4971521.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Kumar N, Stanford W, de Solis C, Aradhana, Abraham ND, Dao T-MJ, Thaseen S, Sairavi A, Gonzalez CU, Ploski JE. The development of an AAV-based CRISPR SaCas9 genome editing system that can be delivered to neurons in vivo and regulated via doxycycline and cre-recombinase. Front Mol Neurosci [Internet]. 2018. [cited 2019 Feb 25];11. Available from:
  76. 76.
    Waxman SG, Zamponi GW. Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci. 2014;17(2):153–63.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Candler Paige
    • 1
  • Stephanie Shiers
    • 1
  • Theodore J. Price
    • 1
    Email author
  1. 1.School of Behavioral and Brain Sciences and Center for Advanced Pain StudiesUniversity of Texas at DallasRichardsonUSA

Personalised recommendations