Advertisement

Walking on the Road to the Statistical Pyramid

–Prof. Kai-Tai Fang’s Contribution to Multivariate Statistics
  • Jianxin Pan
  • Jiajuan LiangEmail author
  • Guoliang Tian
Chapter

Abstract

This paper reviews Prof. Kai-Tai Fang’s major contribution to multivariate statistics in three aspects: generalized multivariate statistics; general symmetric multivariate distributions; growth curve models and miscellaneous fields. Generalized multivariate statistics is a large extension of traditional statistics with normal assumption. It aims to generalize the traditional statistical methodologies like parametric estimation, hypothesis testing, and modeling to a much wider family of multivariate distributions, which is called elliptically contoured distributions (ECD). General symmetric multivariate distributions form an even wider class of multivariate probability distributions that includes the ECD as its special case. Growth curve models (GCM) includes statistical methods that allow for consideration of inter-individual variability in intra-individual patterns of change over time. Outlier detection and identification of influential observations are important topics in the area of the GCM. Miscellaneous fields cover major contributions that Prof. Fang made in various areas of multivariate statistics beyond the three aspects mentioned above.

References

  1. 1.
    Ai, M., Liang, J., Tang, M.L.: Generalized \(T_3\)-plot for testing high-dimensional normality. Front. Math. China 11, 1363–1378 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Anderson, T.W., Fang, K.T.: Distributions of quadratic forms and Cochran’s Theorem for elliptically contoured distributions and their applications. Technical report, No.53. ONR Contract N00014-75-C 0442, Department of Statistics, Stanford University, California (1982)Google Scholar
  3. 3.
    Anderson, T.W., Fang, K.T.: On the Theory of multivariate elliptically contoured distributions. Sankhya 49 Series A, 305–315 (1987)Google Scholar
  4. 4.
    Anderson, T.W., Fang, K.T.: On the theory of multivariate elliptically contoured distributions and their applications. In: Statistical Inference in Elliptically Contoured and Related Distributions, pp.1–23. Allerton Press Inc., New York (1990)Google Scholar
  5. 5.
    Anderson, T.W., Fang, K.T.: Inference in multivariate elliptically contoured distributions based on maximum likelihood. In: Statistical Inference in Elliptically Contoured and Related Distributions, pp. 201–216. Allerton Press Inc., New York (1990)Google Scholar
  6. 6.
    Anderson, T.W., Fang, K.T. Theory and Applications elliptically contoured and related distributions. In: The Development of Statistics: Recent Contributions from China, pp. 41–62. Longman, London (1992)Google Scholar
  7. 7.
    Anderson, T.W., Fang, K.T., Hsu, H.: Maximum likelihood estimates and likelihood ratio criteria for multivariate elliptically contoured distributions. Can. J. Stat. 14, 55–59 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cambanis, S., Huang, S., Simons, G.: On the theory of elliptically contoured distributions. J. Multivar. Anal. 11, 368–385 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Chen, D., Olkin, I.: Pao-Lu Hsu (Hsu, Pao-Lu): the grandparent of probability and statistics in China. Stat. Sci. 27, 434–445 (2012)zbMATHCrossRefGoogle Scholar
  10. 10.
    Cherubini, U., Luciano, E., Vecchiato, W.: Copulas Methods in Finance. Wiley (2004)Google Scholar
  11. 11.
    Dawid, A.P.: Spherical matrix distributions and a multivariate model. J. R. Stat. Soc. (B) 39, 254–261 (1977)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Dawid, A.P.: Extendibility of spherical matrix distributions. J. Multivar. Anal. 8, 559–566 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Fan, J.Q., Fang, K.T.: Minimax estimator and Stein Two-stage estimator of location parameters for elliptically contoured distributions. Chin. J. Appl. Prob. Stat. 1, 103–114 (1985)Google Scholar
  14. 14.
    Fan, J.Q., Fang, K.T.: Inadmissibility of sample mean and regression coefficients for elliptically contoured distributions. Northeast. Math. J. 1, 68–81 (1985)Google Scholar
  15. 15.
    Fan, J.Q., Fang, K.T.: Inadmissibility of the usual estimator for location parameters of spherically symmetric distributions. Chin. Sci. Bull. 32, 1361–1364 (in Chinese) (1987)Google Scholar
  16. 16.
    Fan, J.Q., Fang, K.T.: Inadmissibility of the usual estimator for location parameters of spherically symmetric distributions. Chin. Sci. Bull. 34, 533–537 (1989)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Fan, Y., Patton, A.J.: Copulas in econometrics. Ann. Rev. Econ. 6, 179–200 (2014)CrossRefGoogle Scholar
  18. 18.
    Fang, K.T.: An introduction to some nonparametric statistical methods. Math. Pract. Theory 5, 58–66 (1972)Google Scholar
  19. 19.
    Fang, K.T.: Clustering analysis. Math. Pract. Theory (I and II) 4 (No. 1), 66–80, and (No. 2), 54–62 (1978)Google Scholar
  20. 20.
    Fang, K.T.: Mathematical statistics and standardization (II–VI). Stand. Bull. 2, 3, 4, 13–22, 13–20, 12–30 (1978)Google Scholar
  21. 21.
    Fang, K.T.: Quality control. Stand. Bull. 2, 19–30 (1979)Google Scholar
  22. 22.
    Fang, K.T.: Process capability index \(C_p\) in quality control. Stand. Bull. 1, 10–17 (1980)Google Scholar
  23. 23.
    Fang, K.T.: Clustering methodology and applications, pp. 12–23. Mathematical Geology, Special Issue (I). Geological Publishing House, Beijing (1980)Google Scholar
  24. 24.
    Fang, K.T.: Graph analysis of multivariate observations (I and II). Math. Pract. Theory, 7 (No. 3), 63–71, (No. 4), 42–48 (1981)Google Scholar
  25. 25.
    Fang, K.T.: Restricted occupancy problem. J. Appl. Prob. 19, 707–711 (1982)Google Scholar
  26. 26.
    Fang, K.T.: A restricted occupancy problem and its central limit theorem. Kexue Tongbao 27, 572–573 (1982)Google Scholar
  27. 27.
    Fang, K.T.: Occupancy problems. In: Kotz, S., Johnson, N.L. (eds.) Encyclopedia of Statistical Sciences, vol. 6, pp. 402–406. Wiley, New York (1985)Google Scholar
  28. 28.
    Fang, K.T.: A review: on the theory of elliptically contoured distributions. Adv. Math. 16, 1–15 (1987)zbMATHGoogle Scholar
  29. 29.
    Fang, K.T.: Applied Multivariate Analysis. East China Normal University Press, Shanghai (1989). (in Chinese)Google Scholar
  30. 30.
    Fang, K.T.: Spherical and elliptical symmetry, test of. In: Johnson, N.L., Kotz, S. (eds.) Encyclopedia of Statistical Sciences, vol. 12, 2nd edn, pp. 7924–7930. Wiley, New York (2006)Google Scholar
  31. 31.
    Fang, K.T.: Professor Yao-ting Zhang and “multivariate statistical analysis”. Stat. Educ. 5, a special issue for memory of Professor Yao-ting Zhang (2008)Google Scholar
  32. 32.
    Fang, K.T.: Professor P.L. Hsu—my supervisor forever. In: Morality and Articles Modelling in Human, pp. 406–413. Peking University Press (2010)Google Scholar
  33. 33.
    Fang, K.T., Chen, H.F.: Relationships among classes of spherical matrix distributions. Acta Mathematicae Applicatae Sinica (English Series) 1, 139–147 (1984)zbMATHGoogle Scholar
  34. 34.
    Fang, K.T., Dai, S.S., et al. (under the team name): Basic Methods of Mathematical Statistics. Science Press, Beijing (1973, 1974, 1979). (in Chinese)Google Scholar
  35. 35.
    Fang, K.T., Dong, Z.Q., Han, J.Y.: The structure of stationary queue without after-effect. Acta Mathematicae Applicatae and Computation Sinica 2, 84–90 (1965)Google Scholar
  36. 36.
    Fang, K.T., et al.: (under the team name): The national adult dress standardization by the use of the conditional distribution theory. Stand. Bull. 4, 9–19 (1977)Google Scholar
  37. 37.
    Fang, K.T., et al.: (under the team name): The Analysis of Variance. Science Press, Beijing (in Chinese) (1977)Google Scholar
  38. 38.
    Fang, K.T., et al.: (under the team name): The Analysis of Variance. Science Press, Beijing (in Chinese) (1981)Google Scholar
  39. 39.
    Fang, K.T., Fan, J.Q.: Large sample properties for distributions with rotational symmetries. Northeastern Math. J. 4, 379–388 (1988)Google Scholar
  40. 40.
    Fang, K.T., Fan, J.Q., Xu, J.L.: The distributions of quadratic forms of random matrix and applications. Chin. J. Appl. Prob. Stat. 3, 289–297 (1987)zbMATHGoogle Scholar
  41. 41.
    Fang, K.T., Fan, J.Q., Quan, H., Xiang, J.T.: Statistical analysis for directional data (I–VI). Appl. Stat. Manag. 8 (1), 59–61; (2) 58–65; (3) 57–64; (4) 56–65; (5) 56–64; (6) 57–64 (1989); 9 (1) 56–64; (2) 59–65 (1990)Google Scholar
  42. 42.
    Fang, K.T., Fang, B.Q: A new family of multivariate exponential distributions. Kexue Tongbao, 31, 1510–1511 (1986)Google Scholar
  43. 43.
    Fang, K.T., Fang, B.Q.: Some families of multivariate symmetric distributions related to exponential distribution. J. Multivar. Anal. 24, 109–122 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Fang, B.Q., Fang, K.T.: Distributions of order statistics of multivariate \(l_1\)-norm symmetric distribution and Applications. Chin. J. Appl. Prob. Stat. 4, 44–52 (1988)Google Scholar
  45. 45.
    Fang, K.T., Fang, B.Q.: Families of Exponential matrix distributions. Northeast. Math. J. 4, 16–28 (1988)Google Scholar
  46. 46.
    Fang, B.Q., Fang, K.T.: Maximum likelihood estimates and likelihood ratio criteria for location and scale parameters of the multivariate \(l_1\)-norm symmetric distributions. Acta Math. Appl. Sinica (English Series) 4, 13–22 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Fang, K.T., Fang, B.Q.: A class of generalized symmetric Dirichlet distributions. Acta Math. Appl. Sinica (English Ser.) 4, 316–322 (1988)Google Scholar
  48. 48.
    Fang, K.T., Fang, B.Q.: A characterization of multivariate \(l_1\)-norm symmetric distributions. Stat. Prob. Lett. 7, 297–299 (1989)Google Scholar
  49. 49.
    Fang, K.T., Fang, H.B., von Rosen, D.: A family of bivariate distributions with non-elliptical contours. Commun. Stat.: Theory Methods 29, 1885–1898 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Fang, H.B., Fang, K.T., Kotz, S.: The meta-elliptical distributions with given marginals. J. Multivar. Anal. 82, 1–16 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Fang, K.T., Hickernell, F.J., Winker, P.: Some global optimization algorithms in statistics. In: Du, D.Z., Zhang, X.S., Cheng, K. (eds.) Lecture Notes in Operations Research, pp. 14–24. World Publishing Corporation (1996)Google Scholar
  52. 52.
    Fang, K.T., Kotz, S., Ng, K.W.: Symmetric Multivariate and Related Distributions. Chapman and Hall Ltd., London and New York (1990)zbMATHCrossRefGoogle Scholar
  53. 53.
    Fang, K.T., Kotz, S., Ng, K.W.: On the \(L_1\)-norm distributions. In: Dodge, Y. (ed.) \(L_1\)-Statistical Analysis and Related Methods, pp. 401–413. Elsevier Science Publishers, North Holland, Amsterdam (1992)Google Scholar
  54. 54.
    Fang, K.T., Li, R., Liang, J.: A multivariate version of Ghosh’s \(T_3\)-plot to detect non-multinormality. Comput. Stat. Data Anal. 28, 371–386 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Fang, K.T., Liang, J.: Inequalities for the partial sums of elliptical order statistics related to genetic selection. Can. J. Stat. 17, 439–446 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Fang, K.T., Liang, J.: Tests of Spherical and elliptical symmetry. In: Johnson, N.L., Kotz, S. (eds.) Encyclopedia of Statistical Sciences, Update, vol. 3, pp. 686–691. Wiley, New York (1999)Google Scholar
  57. 57.
    Fang, K.T., Liang, J., Hickernell, F.J., Li, R.: A stabilized uniform Q-Q plot to detect non-multinormality. In: Hsiung, A.C., Ying, Z., Zhang, C.H. (eds.) Random Walk, Sequential Analysis and Related Topics, pp. 254–268. World Scientific, New Jersey (2007)Google Scholar
  58. 58.
    Fang, K.T., Liu, Z.X.: (under the team name): Orthogonal experimental design. Nonferrous Metal 8, 39–56 (1974)Google Scholar
  59. 59.
    Fang, K.T., Liu, C.W.: The use of range in analysis of variance. Math. Pract. Theory 1, 37–51 (1976)Google Scholar
  60. 60.
    Fang, K.T., Ma, F.S.: Splitting in cluster analysis and its applications. Acta Mathematicae Applicatae Sinica 5, 339–534 (1982)zbMATHGoogle Scholar
  61. 61.
    Fang, K.T., Niedzwiecki, D.: A unified approach to distributions in restricted occupancy problem. In: Sen, P.K. (ed.) Contributions to Statistics, Essays in Honour of Professor Norman Lloyd Johnson, pp. 147–158. North Holland Publishing Company (1983)Google Scholar
  62. 62.
    Fang, K.T., Pan, E.P.: Clustering Analysis. Geological Publishing House, Beijing (1982). (in Chinese)Google Scholar
  63. 63.
    Fang, K.T., Quan, H., Chen, Q.Y.: Applied Regression Analysis. Science Press, Beijing (1988). (in Chinese)Google Scholar
  64. 64.
    Fang, K.T., Sun, S.G.: Discriminant analysis by distance. Acta Mathematics Applicatae Sinica 5, 145–154 (1982)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Fang, K.T., Wang, Y.: A sequential algorithm for optimization and its applications to regression analysis. In: Yang, L., Wang, Y. (eds.) Lecture Notes in Contemporary Mathematics, pp. 17–28. Science Press, Beijing (1990)Google Scholar
  66. 66.
    Fang, K.T., Wang, Y.: A sequential algorithm for solving a system of nonlinear equations. J. Comput. Math. 9, 9–16 (1991)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Fang, K.T., Wang, Y., Bentler, P.M.: Some applications of number-theoretic methods in statistics. Stat. Sci. 9, 416–428 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Fang, K.T., Wu, C.Y.: Mathematical Statistics and Standardization. Technical Standardization Press, Beijing (in Chinese) (1981)Google Scholar
  69. 69.
    Fang, K.T., Wu, Y.H.: Distributions of quadratic forms and generalized Cochran’s Theorem. Math. Econ. 1, 29–48 (1984)Google Scholar
  70. 70.
    Fang, K.T., Xing, K.F., Liu, G.Y.: Precision of Test Methods Determination. Chinese Standardization Press, Beijing (1988). (in Chinese)Google Scholar
  71. 71.
    Fang, K.T., Xu, J.L., Teng, C.Y.: Likelihood ratio criteria testing hypotheses about parameters of a class of elliptically contoured distributions. Northeastern Math. J. 4, 241–252 (1988)MathSciNetzbMATHGoogle Scholar
  72. 72.
    Fang, K.T., Xu, J.L.: The Mills’ ratio of multivariate normal distributions and spherical distributions. Acta Mathematicae Sinica 30, 211–220 (1987)Google Scholar
  73. 73.
    Fang, K.T., Xu, J.L.: A class of multivariate distributions including the multivariate logistic. J. Math. Res. Exposition 9, 91–100 (1989)MathSciNetzbMATHGoogle Scholar
  74. 74.
    Fang, K.T., Xu, J.L.: Likelihood ratio criteria testing hypotheses about parameters of elliptically contoured distributions. Math. Econ. 2, 1–9 (1985)Google Scholar
  75. 75.
    Fang, K.T., Xu, J.L.: Statistical Distributions. Science Press, Beijing (1987). (in Chinese)Google Scholar
  76. 76.
    Fang, K.T., Yang, Z.H., Kotz, S.: Generation of multivariate distributions by vertical density representation. Statistics 35, 281–293 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Fang, K.T., Zhang, Y.T.: Generalized Multivariate Analysis. Science Press and Springer-Verlag, Beijing and Berlin (1990)zbMATHGoogle Scholar
  78. 78.
    Fang, K.T., Zheng, Z.K.: A two-stage algorithm of numerical evaluation of integrals in number-theoretic methods. J. Comput. Math. 17, 285–292 (1999)MathSciNetzbMATHGoogle Scholar
  79. 79.
    Fang, K.T., Zhu, L.X., Bentler, P.M.: A necessary test of goodness of fit for sphericity. J. Multivar. Anal. 45, 34–55 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    Glimm, E., Läuter, J.: On the admissibility of stable spherical multivariate tests. J. Multivar. Anal. 86, 254–265 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Johnson, N.L., Kotz, S.: Distributions in Statistics: Continuous Multivariate Distributions. Wiley (1972)Google Scholar
  82. 82.
    Kotz, S., Fang, K.T., Liang, J.: On multivariate vertical density representation and its application to random number generation. Statistics 30, 163–180 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Kotz, S., Seeger, J.P.: A new approach to dependence in multivariate distributions. In: Dallglio, G., Kotz, S., and Salinetti, G. (eds.) Advance in Probability Distributions with Given Marginals, pp. 13–50. Kluwer Academic, Dordrecht (1991)CrossRefGoogle Scholar
  84. 84.
    Kropf, S., Läuter, J., Kosea, D., von Rosen, D.: Comparison of exact parametric tests for high-dimensional data. Comput. Stat. Data Anal. 53, 776–787 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Läuter, J.: Exact \(t\) and \(F\) tests for analyzing studies with multiple endpoints. Biometrics 52, 964–970 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Läuter, J., Glimm, E., Kropf, S.: New multivariate tests for data with an inherent structure. Biom. J. 38, 5–23 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Läuter, J., Glimm, E., Kropf, S.: Multivariate tests based on left-spherically distributed linear scores. Ann. Stat. 26, 1972–1988 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Li, R.Z., Fang, K.T., Zhu, L.X.: Some Q-Q probability plots to test spherical and elliptical symmetry. J. Comput. Graph. Stat. 6(4), 435–450 (1997)Google Scholar
  89. 89.
    Liang, J.: Exact F-tests for a class of elliptically contoured distributions. J. Adv. Stat. 1, 212–217 (2016)CrossRefGoogle Scholar
  90. 90.
    Liang, J.: A Generalized F-test for the mean of a class of elliptically contoured distributions. J. Adv. Stat. 2, 10–15 (2017)Google Scholar
  91. 91.
    Liang, J., Fang, K.T.: Some applications of Läuter’s technique in tests for spherical symmetry. Biom. J. 42, 923–936 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    Liang, J., Fang, K.T., Hickernell, F.J.: Some necessary uniform tests for sphericcal symmetry. Ann. Inst. Stat. Math. 60, 679–696 (2008)zbMATHCrossRefGoogle Scholar
  93. 93.
    Liang, J., Li, R., Fang, H., Fang, K.T.: Testing multinormality based on low-dimensional projection. J. Stat. Plann. Infer. 86, 129–141 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Liang, J., Ng, K.W.: A multivariate normal plot to detect non-normality. J. Comput. Graph. Stat. 18, 52–72 (2009)CrossRefGoogle Scholar
  95. 95.
    Liang, J., Ng, K.W., Tian, G.: A class of uniform tests for goodness-of-fit of the multivariate \(L_p\)-norm spherical distributions and the \(l_p\)-norm symmetric distributions. Ann. Inst. Stat. Math. 71, 137–162 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Liang, J., Tang, M.L.: Generalized F-tests for the multivariate normal mean. Comput. Stat. Data Anal. 57, 1177–1190 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Liang, J., Tang, M.L., Chan, P.S.: A generalized Shapiro-Wilk W Statistic for testing high-dimensional normality. Comput. Stat. Data Anal. 53, 3883–3891 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    Liang, J., Tang, M.L., Zhao, X.: Testing high-dimensional normality based on classical skewness and kurtosis with a possible small sample size. Commun. Stat.-Theory Methods 48(23), 5719–5732 (2019)MathSciNetCrossRefGoogle Scholar
  99. 99.
    Liu, C.W., Fang, K.T.: How to use statistical papers (I and II). Math. Pract. Theory 3, 49–55; 4, 55–61 (1976)Google Scholar
  100. 100.
    Liu, C.W., Fang, K.T.: Yates’ algorithm and its application in \(2^n\)-type orthogonal array. Math. Pract. Theory 3, 9–18 (1977)Google Scholar
  101. 101.
    Liu, C.W., Dai, S.S., Fang, K.T.: Elements of Probability Papers. Science Press, Beijing (1980). (in Chinese)Google Scholar
  102. 102.
    Mardia, K.V.: Directional data analysis: an overview. J. Appl. Stat. 15, 115–122 (1988)CrossRefGoogle Scholar
  103. 103.
    Nelsen, R.B.: An Introduction to Copulas. Springer (2006)Google Scholar
  104. 104.
    Pan, J.X., Fang, K.T.: Multiple outlier detection in growth curve model with unstructured covariance matrix. Ann. Inst. Stat. Math. 47, 137–153 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Pan, J.X., Fang, K.T.: Detecting influential observations in growth curve model with unstructured covariance. Comput. Stat. Data Anal. 22, 71–87 (1996)zbMATHCrossRefGoogle Scholar
  106. 106.
    Pan, J.X., Fang, K.T.: Bayesian local influence in growth curve model with unstructured covariance. Biom. J. 41, 641–658 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    Pan, J.X., Fang, K.T.: Growth Curve Models and Statistical Diagnostics. Springer, New York (2002)zbMATHCrossRefGoogle Scholar
  108. 108.
    Pan, J.X., Fang, K.T., Liski, E.P.: Bayesian local influence in the growth curve model with Rao’s simple covariance structure. J. Multivar. Anal. 58, 55–81 (1996)zbMATHCrossRefGoogle Scholar
  109. 109.
    Pan, J.X., Fang, K.T., Rosen, D.V.: Local infuence assessment in the growth curve model with unstructured covariance. J. Stat. Plann. Infer. 62, 263–278 (1997)zbMATHCrossRefGoogle Scholar
  110. 110.
    Pan, J.X., Fang, K.T., Rosen, D.V.: On the posterior distribution of the covariance matrix of the growth curve model. Stat. Prob. Lett. 38, 33–39 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  111. 111.
    Pan, J.X., Fung, W.K., Fang, K.T.: Multiple outlier detection in multivariate data using projection pursuit techniques. J. Stat. Plann. Infer. 83, 153–167 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    Quan, H., Fang, K.T.: Unbiasedness of some testing hypotheses in elliptically contoured population. Acta Mathematicae Applicatae Sinica 10, 215–234 (1987)MathSciNetGoogle Scholar
  113. 113.
    Quan, H., Fang, K.T., Teng, C.Y.: The applications of information function for spherical distributions. Northeast. Math. J. 5, 27–32 (1989)MathSciNetzbMATHGoogle Scholar
  114. 114.
    Rosen, D.V.: The growth curve model: a review. Commun. Stat.-Theor. Methods 20, 2791–2822 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    Rosen, V.D., Fang, H.B., Fang, K.T.: An extension of the complex normal distribution. In: Johnson, N.L., Balakrishnan, N. (eds.) Advances in the Theory and Practice of Statistics: A volume in Honor of Samuel Kotz, pp. 415–427. Wiley, New York (1997)Google Scholar
  116. 116.
    Shen, S.Y., Fang, K.T.: Neural computation on nonlinear regression analysis problems. Int. J. Math. Stat. Sci. 3(2), 155–178 (1995)MathSciNetzbMATHGoogle Scholar
  117. 117.
    Song, D., Gupta, A.K.: \(L_p\)-norm uniform distribution. Proc. Am. Math. Soc. 125(2), 595–601 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    Sun, S.G., Fang, K.T.: The test for additional information in multivariate analysis. Acta Mathematicae Applicatae Sinica 3, 81–91 (1977)Google Scholar
  119. 119.
    Wang, Y., Fang, K.T.: A sequential number-theoretic methods for optimization and its applications in statistics. In: The Development of Statistics: Recent Contributions from China, pp. 139–156. Longman, London (1992)Google Scholar
  120. 120.
    Winker, P., Fang, K.T.: Randomness and quasi-Monte Carlo approaches: some remarks on fundamentals and applications in statistics and econometrics. Jahrbücher für Nationalökonomie und Statistics 218, 215–228 (1999)Google Scholar
  121. 121.
    Yue, X., Ma, C.: Multivariate \(l_p\)-norm symmetric distributions. Stat. Prob. Lett. 24, 281–288 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  122. 122.
    Zhang, H.C., Fang, K.T.: Some properties of left-spherical and right-spherical matrix distributions. Chin. J. Appl. Prob. Stat. 3, 97–105 (1987)MathSciNetzbMATHGoogle Scholar
  123. 123.
    Zhang, Y.T., Fang, K.T.: An Introduction to Multivariate Analysis. Science Press, Beijing (1982, 1999). (in Chinese)Google Scholar
  124. 124.
    Zhang, Y., Fang, K.T., Chen, H.F.: On matrix elliptically contoured distributions. Acta Math. Scientia 5, 341–353 (1985)Google Scholar
  125. 125.
    Zhu, L.X., Fang, K.T., Bhatti, M.I., Bentler, P.M.: Testing Sphericity of a high-dimensional distribution based on bootstrap approximation. Pakistan J. Stat. 11, 49–65 (1995)MathSciNetzbMATHGoogle Scholar
  126. 126.
    Zhu, L.X., Fang, K.T., Li, R.Z.: A new approach for testing symmetry of a high-dimensional distribution. Bull. Hong Kong Math. Soc. 1, 35–46 (1997)MathSciNetzbMATHGoogle Scholar
  127. 127.
    Zhu, L.X., Fang, K.T., Zhang, J.T.: A projection NT-type test for spherical symmetry of a multivariate distribution. In: Tiit, E.M., Kollo, T., and Niemi, H. (eds.) New Trends in Probability and Statistics, Multivariate Statistics and Matrices in Statistics, vol. 3, pp. 109–122. VSP-TEV, Utrecht, The Netherlands (1995)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of ManchesterManchesterUK
  2. 2.University of New HavenWest HavenUSA
  3. 3.Southern University of Science and TechnologyShenzhenChina

Personalised recommendations