• Chen QiuEmail author
  • Jian S. Dai
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 139)


As a new type of mechanical devices, compliant mechanisms [1] have been used in a variety of research and engineering disciplines, such as precision engineering, biomechanical engineering, etc. Unlike traditional mechanisms, a compliant mechanism utilizes the deformation of flexible elements and arranges them in a proper way to generate desired motions. As a consequence, compliant mechanisms demonstrate advantages such as the realization of precise motion, elimination of backlash and lubrication, as well as monolithic manufacturing. On the other hand, to successfully design a compliant mechanism remains challenging, which requires a good knowledge of both compliance behaviours of flexible elements as well as the integration of them. Evaluating the compliance performance of flexible members belongs to the solid-mechanics discipline, while the assembly of flexible elements is more related to traditional mechanism design. As such, they are introduced separately in the following sections.


  1. 1.
    Howell, L.L.: Compliant Mechanisms. Wiley-Interscience (2001)Google Scholar
  2. 2.
    Shigley, J.E., Mischke, C.R., Budynas, R.G., Liu, X., Gao, Z.: Mechanical Engineering Design. vol. 89. McGraw-Hill, New York (1989)Google Scholar
  3. 3.
    Parise, J.J., Howell, L.L., Magleby, S.P.: Ortho-planar linear-motion springs. Mech. Mach. Theory 36(11), 1281–1299 (2001)zbMATHGoogle Scholar
  4. 4.
    Awtar, S., Slocum, A.H.: Constraint-based design of parallel kinematic XY flexure mechanisms. J. Mech. Des. 129(8), 816–830 (2007)Google Scholar
  5. 5.
    Goldfarb, M., Speich, J.E.: A well-behaved revolute flexure joint for compliant mechanism design. J. Mech. Des. 121(3), 424–429 (1999)Google Scholar
  6. 6.
    Smith, S.T.: Flexures: Elements of Elastic Mechanisms. CRC Press (2000)Google Scholar
  7. 7.
    Zhang, S., Fasse, E.D.: A finite-element-based method to determine the spatial stiffness properties of a notch hinge. J. Mech. Des. 123(1), 141–147 (2001)Google Scholar
  8. 8.
    Wood, R., Avadhanula, S., Sahai, R., Steltz, E., Fearing, R.: Microrobot design using fiber reinforced composites. J. Mech. Des. 130(5), 052304 (2008)Google Scholar
  9. 9.
    Dai, J.S., Cannella, F.: Stiffness characteristics of carton folds for packaging. J. Mech. Des. 130(2) (2008)Google Scholar
  10. 10.
    McGough, K., Ahmed, S., Frecker, M., Ounaies, Z.: Finite element analysis and validation of dielectric elastomer actuators used for active origami. Smart Mater. Struct. 23(9), 094002 (2014)Google Scholar
  11. 11.
    Blanding, D.L.: Exact constraint: machine design using kinematic processing. American Society of Mechanical Engineers (1999)Google Scholar
  12. 12.
    Timoshenko, S.P., Goodier, J.: Theory of elasticity. Int. J. Bulk Solids Storage Silos 1(4) (2014)Google Scholar
  13. 13.
    Su, H., Yue, C.: Type synthesis of freedom and constraint elements for design of flexure mechanisms. J. Mech. Sci 4(2), 263–277 (2013)Google Scholar
  14. 14.
    Zhang, Y., Su, H.-J., Liao, Q.: Mobility criteria of compliant mechanisms based on decomposition of compliance matrices. Mech. Mach. Theory 79, 80–93 (2014)Google Scholar
  15. 15.
    Hale, L.C.: Principles and techniques for designing precision machines. Technical report, Lawrence Livermore National Lab., CA, USA (1999)Google Scholar
  16. 16.
    Koseki, Y., Tanikawa, T., Koyachi, N., Arai, T.: Kinematic analysis of a translational 3-DOF micro-parallel mechanism using the matrix method. Adv. Robot. 16(3), 251–264 (2002)Google Scholar
  17. 17.
    Pham, H.-H., Chen, I.-M.: Stiffness modeling of flexure parallel mechanism. Precis. Eng. 29(4), 467–478 (2005)Google Scholar
  18. 18.
    Li, Y., Xu, Q.: Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator. IEEE Trans. Robot. 25(3), 645–657 (2009)Google Scholar
  19. 19.
    Su, H.-J., Tari, H.: Realizing orthogonal motions with wire flexures connected in parallel. J. Mech. Des. 132, 121002 (2010)Google Scholar
  20. 20.
    Pilkey, W.D.: Formulas for Stress, Strain, and Structural Matrices. Wiley (1993)Google Scholar
  21. 21.
    Bisshopp, K., Drucker, D.: Large deflection of cantilever beams. Q. Appl. Math. 3(1) (1945)Google Scholar
  22. 22.
    Frisch-Fay, R.: Flexible Bars. Butterworths (1962)Google Scholar
  23. 23.
    Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: Solid Mechanics, vol. 2. Butterworth-Heinemann (2000)Google Scholar
  24. 24.
    De Borst, R., Crisfield, M.A., Remmers, J.J., Verhoosel, C.V.: Nonlinear Finite Element Analysis of Solids and Structures. Wiley (2012)Google Scholar
  25. 25.
    Su, H.-J.: A pseudorigid-body 3R model for determining large deflection of cantilever beams subject to tip loads. J. Mech. Robot. 1(2), 021008 (2009)Google Scholar
  26. 26.
    Xu, P., Jingjun, Y., Guanghua, Z., Shusheng, B., Zhiwei, Y.: Analysis of rotational precision for an isosceles-trapezoidal flexural pivot. J. Mech. Des. 130(5), 052302 (2008)Google Scholar
  27. 27.
    Xu, P., Jingjun, Y., Guanghua, Z., Shusheng, B.: The stiffness model of leaf-type isosceles-trapezoidal flexural pivots. J. Mech. Des. 130(8), 082303 (2008)Google Scholar
  28. 28.
    Pham, H.-H., Yeh, H.-C., Chen, I.-M.: Micromanipulation system design based on selective actuation mechanisms. Int. J. Robot. Res. 25(2), 171–186 (2006)Google Scholar
  29. 29.
    Lobontiu, N., Garcia, E.: Two-axis flexure hinges with axially-collocated and symmetric notches. Comput. Struct. 81(13), 1329–1341 (2003)Google Scholar
  30. 30.
    Felton, S.M., Tolley, M.T., Shin, B., Onal, C.D., Demaine, E.D., Rus, D., Wood, R.J.: Self-folding with shape memory composites. Soft Matter 9(32), 7688–7694 (2013)Google Scholar
  31. 31.
    Zhang, K., Qiu, C., Dai, J.S.: Helical Kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators. J. Mech. Robot. 7(2), 021014 (2015)Google Scholar
  32. 32.
    Beex, L., Peerlings, R.: An experimental and computational study of laminated paperboard creasing and folding. Int. J. Solids Struct. 46(24), 4192–4207 (2009)zbMATHGoogle Scholar
  33. 33.
    Qiu, C., Aminzadeh, V., Dai, J.S.: Kinematic analysis and stiffness validation of origami cartons. J. Mech. Des. 135(11), 111004 (2013)Google Scholar
  34. 34.
    Hopkins, J.B.: Design of flexure-based motion stages for mechatronic systems via freedom, actuation and constraint topologies (FACT). Ph.D. thesis, Massachusetts Institute of Technology (2010)Google Scholar
  35. 35.
    Hopkins, J.B., Culpepper, M.L.: Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (fact)-part I: Principles. Precis. Eng. 34(2), 259–270 (2010)Google Scholar
  36. 36.
    Hopkins, J.B., Culpepper, M.L.: A screw theory basis for quantitative and graphical design tools that define layout of actuators to minimize parasitic errors in parallel flexure systems. Precis. Eng. 34(4), 767–776 (2010)Google Scholar
  37. 37.
    Ball, R.S.: A Treatise on the Theory of Screws. Cambridge University Press (1900)Google Scholar
  38. 38.
    Dai, J.S., Rees Jones, J.: Interrelationship between screw systems and corresponding reciprocal systems and applications. Mech. Mach. Theory 36(5), 633–651 (2001)Google Scholar
  39. 39.
    Qiu, C., Yu, J., Li, S., Su, H.-J., Zeng, Y.: Synthesis of actuation spaces of multi-axis parallel flexure mechanisms based on screw theory. In: ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 181–190. American Society of Mechanical Engineers (2011)Google Scholar
  40. 40.
    Yu, J.J., Li, S.Z., Qiu, C.: An analytical approach for synthesizing line actuation spaces of parallel flexure mechanisms. J. Mech. Des. 135(12), 124501–124501 (2013)Google Scholar
  41. 41.
    Qiu, C., Zhang, K.T., Dai, J.S.: Constraint-based design and analysis of a compliant parallel mechanism using SMA-spring actuators. In: Proceedings of ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, New York, Buffalo, USA, August 17–20, 2014. ASME, New York (2014)Google Scholar
  42. 42.
    Yi, B.-J., Chung, G.B., Na, H.Y., Kim, W.K., Suh, I.H.: Design and experiment of a 3-DOF parallel micromechanism utilizing flexure hinges. IEEE Trans. Robot. Autom. 19(4), 604–612 (2003)Google Scholar
  43. 43.
    Kang, B.H., Wen, J.T.-Y., Dagalakis, N., Gorman, J.J.: Analysis and design of parallel mechanisms with flexure joints. IEEE Trans. Robot. 21(6), 1179–1185 (2005)Google Scholar
  44. 44.
    Li, Y., Xu, Q.: A novel design and analysis of a 2-DOF compliant parallel micromanipulator for nanomanipulation. IEEE Trans. Autom. Sci. Eng. 3(3), 247–254 (2006)Google Scholar
  45. 45.
    Yao, Q., Dong, J., Ferreira, P.M.: Design, analysis, fabrication and testing of a parallel-kinematic micropositioning XY stage. Int. J. Mach. Tools Manuf. 47(6), 946–961 (2007)Google Scholar
  46. 46.
    Li, Y., Xu, Q.: A totally decoupled piezo-driven XYZ flexure parallel micropositioning stage for micro/nanomanipulation. IEEE Trans. Autom. Sci. Eng. 8(2), 265–279 (2011)Google Scholar
  47. 47.
    Tang, X., Chen, I., et al.: A large-displacement and decoupled XYZ flexure parallel mechanism for micromanipulation. In: 2006 IEEE International Conference on Automation Science and Engineering, CASE’06, pp. 75–80. IEEE (2006)Google Scholar
  48. 48.
    Carroll, D.W., Magleby, S.P., Howell, L.L., Todd, R.H., Lusk, C.P.: Simplified manufacturing through a metamorphic process for compliant ortho-planar mechanisms. In: ASME 2005 International Mechanical Engineering Congress and Exposition, pp. 389–399. American Society of Mechanical Engineers (2005)Google Scholar
  49. 49.
    Winder, B.G., Magleby, S.P., Howell, L.L.: Kinematic representations of pop-up paper mechanisms. J. Mech. Robot. 1(2), 021009 (2009)Google Scholar
  50. 50.
    Lee, D.-Y., Kim, J.-S., Kim, S.-R., Koh, J.-S., Cho, K.-J.: The deformable wheel robot using magic-ball origami structure. In: Proceedings of the 2013 ASME Design Engineering Technical Conference, Portland, OR (2013)Google Scholar
  51. 51.
    Vander Hoff, E., Jeong, D., Lee, K.: Origamibot-I: a thread-actuated origami robot for manipulation and locomotion. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 1421–1426. IEEE (2014)Google Scholar
  52. 52.
    Dai, J.S., Jones, J.R.: Mobility in metamorphic mechanisms of foldable/erectable kinds. J. Mech. Des. 121(3), 375–382 (1999)Google Scholar
  53. 53.
    Dai, J.S., Wang, D., Cui, L.: Orientation and workspace analysis of the multifingered metamorphic hand–metahand. IEEE Trans. Robot. 25(4), 942–947 (2009)Google Scholar
  54. 54.
    Wilding, S.E., Howell, L.L., Magleby, S.P.: Spherical lamina emergent mechanisms. Mech. Mach. Theory 49, 187–197 (2012)Google Scholar
  55. 55.
    Bowen, L., Frecker, M., Simpson, T.W., von Lockette, P.: A dynamic model of magneto-active elastomer actuation of the waterbomb base. In: ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. V05BT08A051–V05BT08A051. American Society of Mechanical Engineers (2014)Google Scholar
  56. 56.
    Yao, W., Dai, J.S.: Dexterous manipulation of origami cartons with robotic fingers based on the interactive configuration space. J. Mech. Des. 130(2), 022303 (2008)Google Scholar
  57. 57.
    Zhang, K., Fang, Y., Fang, H., Dai, J.S.: Geometry and constraint analysis of the three-spherical kinematic chain based parallel mechanism. J. Mech. Robot. 2(3), 031014 (2010)Google Scholar
  58. 58.
    Wei, G., Dai, J.S.: Origami-inspired integrated planar-spherical overconstrained mechanisms. J. Mech. Des. 136(5), 051003 (2014)Google Scholar
  59. 59.
    Ahmed, S., Lauff, C., Crivaro, A., McGough, K., Sheridan, R., Frecker, M., von Lockette, P., Ounaies, Z., Simpson, T., Lien, J., et al.: Multi-field responsive origami structures: preliminary modeling and experiments. ASME Paper No. DETC2013-12405 (2013)Google Scholar
  60. 60.
    Delimont, I.L., Magleby, S.P., Howell, L.L.: Evaluating compliant hinge geometries for origami-inspired mechanisms. J. Mech. Robot. 7(1), 011009 (2015)Google Scholar
  61. 61.
    Mentrasti, L., Cannella, F., Pupilli, M., Dai, J.S.: Large bending behavior of creased paperboard. I. Experimental investigations. Int. J. Solids Struct. 50(20), 3089–3096 (2013)Google Scholar
  62. 62.
    Mentrasti, L., Cannella, F., Pupilli, M., Dai, J.S.: Large bending behavior of creased paperboard. II. Structural analysis. Int. J. Solids Struct. 50(20), 3097–3105 (2013)Google Scholar
  63. 63.
    Hanna, B.H., Lund, J.M., Lang, R.J., Magleby, S.P., Howell, L.L.: Waterbomb base: a symmetric single-vertex bistable origami mechanism. Smart Mater. Struct. 23(9), 094009 (2014)Google Scholar
  64. 64.
    Hanna, B.H., Magleby, S., Lang, R.J., Howell, L.L.: Force-deflection modeling for generalized origami waterbomb-base mechanisms. J. Appl. Mech. (2015)Google Scholar
  65. 65.
    Qiu, C., Zhang, K., Dai, J.S.: Repelling-screw based force analysis of origami mechanisms. J. Mech. Robot. 15(1122), 1 (2015)Google Scholar
  66. 66.
    Zhang, K., Qiu, C., Dai, J.S.: An extensible continuum robot with integrated origami parallel modules. J. Mech. Robot. (2015)Google Scholar
  67. 67.
    Dimentberg, F.M.: The screw calculus and its applications in mechanics. Technical report, DTIC Document (1968)Google Scholar
  68. 68.
    Loncaric, J.: Normal forms of stiffness and compliance matrices. IEEE J. Robot. Autom. 3(6), 567–572 (1987)Google Scholar
  69. 69.
    Lipkin, H., Patterson, T.: Geometrical properties of modelled robot elasticity: Part I-decomposition. In: 1992 ASME Design Technical Conference, Scottsdale, DE, vol. 45, pp. 179–185 (1992)Google Scholar
  70. 70.
    Lipkin, H., Patterson, T.: Geometrical properties of modelled robot elasticity: Part II–center of elasticity. In: 22nd Biennal Mechanisms Conference Robotics, Spatial Mechanisms, and Mechanical Systems: ASME Design Technical Conferences, pp. 13–16. Scottsdale, AZ (1992)Google Scholar
  71. 71.
    Patterson, T., Lipkin, H.: Structure of robot compliance. Trans. Am. Soc. Mech. Eng. J. Mech. Des. 115, 576–576 (1993)Google Scholar
  72. 72.
    Patterson, T., Lipkin, H.: A classification of robot compliance. Trans. Am. Soc. Mech. Eng. J. Mech. Des. 115, 581–581 (1993)Google Scholar
  73. 73.
    Ciblak, N., Lipkin, H.: Synthesis of cartesian stiffness for robotic applications. In: 1999 Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, pp. 2147–2152. IEEE (1999)Google Scholar
  74. 74.
    Huang, S., Schimmels, J.M.: The bounds and realization of spatial stiffnesses achieved with simple springs connected in parallel. IEEE Trans. Robot. Autom. 14(3), 466–475 (1998)Google Scholar
  75. 75.
    Huang, S., Schimmels, J.M.: The eigenscrew decomposition of spatial stiffness matrices. IEEE Trans. Robot. Autom. 16(2), 146–156 (2000)Google Scholar
  76. 76.
    Waldron, K., Wang, S.-L., Bolin, S.: A study of the Jacobian matrix of serial manipulators. J. Mech. Des. 107(2), 230–237 (1985)Google Scholar
  77. 77.
    Joshi, S.A., Tsai, L.-W.: Jacobian analysis of limited-DOF parallel manipulators. In: ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 341–348. American Society of Mechanical Engineers (2002)Google Scholar
  78. 78.
    Tsai, L.-W.: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley (1999)Google Scholar
  79. 79.
    Huang, T., Zhao, X., Whitehouse, D.J.: Stiffness estimation of a tripod-based parallel kinematic machine. IEEE Trans. Robot. Autom. 18(1), 50–58 (2002)Google Scholar
  80. 80.
    Li, Y., Xu, Q.: Stiffness analysis for a 3-PUU parallel kinematic machine. Mech. Mach. Theory 43(2), 186–200 (2008)zbMATHGoogle Scholar
  81. 81.
    Xu, Q., Li, Y.: An investigation on mobility and stiffness of a 3-DOF translational parallel manipulator via screw theory. Robot. Comput. Integr. Manuf. 24(3), 402–414 (2008)Google Scholar
  82. 82.
    Kim, H.S., Lipkin, H.: Stiffness of parallel manipulators with serially connected legs. J. Mech. Robot. 6(3), 031001 (2014)Google Scholar
  83. 83.
    Selig, J., Ding, X.: A screw theory of static beams. In: 2001 Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 312–317. IEEE (2001)Google Scholar
  84. 84.
    Ding, X., Selig, J.M.: On the compliance of coiled springs. Int. J. Mech. Sci. 46(5), 703–727 (2004)zbMATHGoogle Scholar
  85. 85.
    Ciblak, N., Lipkin, H.: Design and analysis of remote center of compliance structures. J. Robot. Syst. 20(8), 415–427 (2003)zbMATHGoogle Scholar
  86. 86.
    Dai, J.S., Xilun, D.: Compliance analysis of a three-legged rigidly-connected platform device. J. Mech. Des. 128(4), 755–764 (2006)Google Scholar
  87. 87.
    Yu, J.J., Li, S.Z., Qiu, C.: An analytical approach for synthesizing line actuation spaces of parallel flexure mechanisms. J. Mech. Des. 135(12), 124501 (2013)Google Scholar
  88. 88.
    Qiu, C., Dai, J.S.: Constraint stiffness construction and decomposition of a SPS orthogonal parallel mechanism. In: Proceedings of ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Massachusetts, Boston, USA, August 2–5, 2015. ASME (2015)Google Scholar
  89. 89.
    Qiu, C., Qi, P., Liu, H., Althoefer, K., Dai, J.S.: Six-dimensional compliance analysis and validation of ortho-planar springs. J. Mech. Des. (2016)Google Scholar
  90. 90.
    Qiu, C., Vahid, A., Dai, J.S.: Kinematic analysis and stiffness validation of origami cartons. J. Mech. Des. 135(11), 111004 (2013)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Innovation CentreNanyang Technological UniversitySingaporeSingapore
  2. 2.Department of InformaticsKing’s College LondonLondonUK

Personalised recommendations