Advertisement

Digraphs in the Analysis of Systems’ Representation of Mathematical Knowledge

  • Patricia Esperanza Balderas-CañasEmail author
Chapter
  • 42 Downloads

Abstract

One of the main goals in education is to narrow the teaching according to students’ knowledge and skills; therefore, many topics may emerge and become important, and many research questions may be posed and studied. In this context and using a systemic approach, I present and discuss a methodology to analyze the visual reasoning processes given with the use of mathematical representations when learning differential calculus at a high school level. The interest is knowing how learners acquire and use some of the systems of mathematical representation and how they organize these systems to produce acceptable responses in the school environment. The representation systems used by the participants were modeled by digraphs, which turned out to be complete, entirely disconnected, and transitive; strong, weak, and idiosyncratic systems of representation were identified. Also, based on the conclusions, some teaching recommendations were created for making decisions in the classroom for students to acquire solid systems of representation by which acceptable answers may be given to solve differential calculus problems.

Keywords

Systemic approach Visual thinking Math representations Advanced calculators Differential calculus 

Supplementary material

References and Bibliography

  1. R. Ackof, M. Sasieni, Fundamentos de Investigación de Operationes (LIMUSA, México, 1984)., 6aGoogle Scholar
  2. P. Balderas, Adquisición de conceptos de cálculo con apoyo de la graficación en microcomputadora Tesis maestría. México, UACPYP-CCH UNAM (1992)Google Scholar
  3. P. Balderas, La representatión y el razonamiento visual en la enseñanza de la matemática. Tesis doctoral, Facultad de Filosofía y Letras, Universidad Nacional Autónoma de México (1998)Google Scholar
  4. P. Balderas, Modelación de las representaciones matemáticas generadas por la interacción en pequeños grupos, En Ingeniería de Sistemas. Investigación e Intervención, P. Balderas, y G. Sánchez, (coords.) (Facultad de Ingeniería – Plaza y Valdés, México), pp. 67–92. ISBN: 978-607-402-394-7 (Plaza y Valdés), 978-607- 02-2408-9 (UNAM) (2011)Google Scholar
  5. A. Bishop, Review of research on visualization in mathematics. Focus on learning problems in mathematics, (11), 1, Winter, pp. 7–16 (1989)Google Scholar
  6. M.A. Campos, S. Gaspar, The propositional analysis model: A concept- link approach to text-based knowledge organization analysis. Reportes de investigación. México, IIMAS-UNAM, (5), 46, junio (1995a)Google Scholar
  7. M.A. Campos, S. Gaspar, The propositional analysis model: Semantic analysis of correspondence in knowledge construction. Reportes de investigación. México, IIMAS-UNAM, (5), 49, octubre (1995b)Google Scholar
  8. P. Cobb, J. Whitenack, A method for conducting longitudinal analyses of classroom videorecordings and transcripts, educational studies in mathematics, (30), 3, abril (1996)Google Scholar
  9. R. Donmoyer, Argumentos para la investigacióon de estudios de caso: redefinición de conceptos de validez interna y externa, En Investigación Etnográfica en Educación, eds. by M. Rueda, M.A. Campos. UNAM, pp. 65–86 (1992)Google Scholar
  10. E. Dubinsky, Reflective Abstraction in Advanced Mathematical Thinking. En D. Tall (ed.) Advanced Mathematic Thinking (Dordrecht, Kluwer Academic Publishers, 1991) p. 95-123.Google Scholar
  11. Fischbein, The Interaction between the Formal, the Algorithmic, and the Intuitive Components in a Mathematical Activity. En R. Biehler, R. W. Scholz, R. Sträber, B. Winkelmann (eds.) Didactics of Mathematics as a Scientific Discipline, Dordrecht, Kluwer Academic Publishers, p. 231–245 (1994)Google Scholar
  12. G. Goldin, J. Kaput, A joint perspective on the idea of representation in learning and doing mathematics, in Theories of Mathematical Learning, ed. by L. Steffe et al., (Lawrence Erlbaum Associates, Hillsdale, 1996), pp. 397–430Google Scholar
  13. F. Harary, R. Norman, D. Cartwright, Structural Models: An Introduction to the Theory of Directed Graphs (Wiley, New York, 1965), p. 415zbMATHGoogle Scholar
  14. J. Hiebert, T. Carpenter, Learning and teaching with understanding, in Handbook of Research on Mathematics Teaching and Learning, ed. by D. A. Grouws, (NCTM, New York, 1992), pp. 65–97Google Scholar
  15. C. Janvier, Translation processes in mathematics education, in Problems of Representation in the Teaching and Learning of Mathematics, ed. by C. Janvier, (Lawrence Erlbaum Associates, Publishers, Hillsdale, 1987), pp. 27–32Google Scholar
  16. C. Janvier, C. Girardon, J. Morand, Mathematical symbols and representations, in Research Ideas for the Classroom: High School Mathematics, ed. by P. S. Wilson, (Macmillan, New York, 1993), pp. 79–102Google Scholar
  17. J. Kaput, Technology and mathematics education, in Handbook of Research on Mathematics Teaching and Learning, ed. by D. A. Grouws, (NCTM, New York, 1992), pp. 515–556Google Scholar
  18. J. Kaput, Democratizing access to calculus: New routes to old roots, in Mathematical Thinking and Problem Solving, ed. by A. Schoenfeld, (Lawrence Erbaum Associates, Publishers, Hillsdale, 1994a), pp. 77–156Google Scholar
  19. J. Kaput, The representational roles of technology in connecting mathematics with authentic experience, in Didactics of Mathematics as a Scientific Discipline, ed. by R. Biehler, R. W. Scholz, R. Sträβer, B. Winkelmann, (Kluwer Academic Publishers, Dordrecht, 1994b), pp. 379–397Google Scholar
  20. J. Keeves, Overview of issues in educational research, in Issues in Educational Research, ed. by J. Keevs, G. Lakomski, (Pergamon, The Netherlands, 1999)Google Scholar
  21. V.A. Krutestkii, in The Psychology of Mathematical Abilities in Schoolchildren, eds. by T. Joan Teller (trad.), J. Kilpatrick, Y. Wirszup (The University of Chicago Press, Chicago, 1976)Google Scholar
  22. G. Light, R. Cox, Learning and Teaching in Higher Education (Paul Chapman Publishing, London, 2001)Google Scholar
  23. Y. Lincoln, E. Guba, Naturalistic inquiry (Sage Publications, Newbury Park, 1985), p. 416Google Scholar
  24. B. Moses, Visualization: A problem-solving approach. Math Monograph, 7, April, pp. 61–66 (1982).Google Scholar
  25. S.E. Palmer, Fundamental aspects of cognitive representation, in Cognition and Categorization, ed. by E. Rosch, B. Lloyd, (Lawrence Erlbaum Associates, Publishers, Hillsdale, 1978), pp. 259–303Google Scholar
  26. N. Presmeg, Visualization and mathematical giftedness. Educ. Stud. Math. 17(3), 297–311 (1986)CrossRefGoogle Scholar
  27. A. Sfard, On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educ. Stud. Math. 22, 1 (1991)., Springer.CrossRefGoogle Scholar
  28. P. Thompson, Images of rate and operational understanding of the fundamental theorem of calculus. Educ. Stud. Math. 26, 2–3 (1994)Google Scholar
  29. R. Zazkis, E. Dubinsky, J. Dautermann, Coordinating visual and analytic strategies: a study of students’ understanding of the group D4. J. Res. Math. Educ. 27(4), 435–457 (1996)CrossRefGoogle Scholar
  30. W. Zimmermann, Visual thinking in calculus, in Visualization in Teaching and Learning of Mathematics, ed. by W. Zimmermann, S. Cunningham, (Washington, The Mathematical Association Of America, 1991), pp. 127–137Google Scholar
  31. W. Zimmermann, S. Cunningham (eds.) Visualization in Teaching and Learning Mathematics, Washington: The Mathematical Association of America (1991)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Department of Systems, Faculty of EngineeringNational Autonomous University of MexicoMexico CityMexico

Personalised recommendations