Introduction to the macrolide antibiotics

  • Herbert A. Kirst
Part of the Milestones in Drug Therapy MDT book series (MDT)


Macrolide antibiotics are an old and well-established class of antimicrobial agents that have long played a significant role in the chemotherapy of infectious diseases[1-3]. Among the most important characteristics of the macrolide class are a moderately broad spectrum of antimicrobial activity, an orally effective route of administration, and a relatively high margin of safety (high therapeutic index). Although macrolides have been the primary antibiotic of choice for a few indications, they have also played a very critical role as an alternative drug of choice, particularly as an alternative to the penicillins. Over the past two decades, the macrolide class has undergone a remarkable resurgence that has been characterized by 1) the discovery and commercial development of several important new semi-synthetic derivatives exhibiting a variety of improved features and 2) clinical efficacy in the treatment of several infectious diseases not originally associated with macrolide therapy. The subsequent chapters of this book will 1) document the clinical progress that has been made thus far in utilizing the more recent semi-synthetic macrolides, 2) update our knowledge and understanding about the biosynthetic origins of the macrolides and the mechanisms involved in their antibacterial activity and in microbial resistance to them, and 3) look toward the future emergence of additional new macrolides potentially arising from the discovery and development pipelines of several pharmaceutical research organizations.


Macrolide Antibiotic Mayo Clin Proc Polyketide Synthases Microbial Resistance Bovine Respiratory Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bryskier AJ, Butzler J-P, Neu HC, Tulkens PM (eds) (1993)Macrolides: chemistry,pharmacol-ogy and clinical uses. Annette Blackwell, ParisGoogle Scholar
  2. 2.
    Steigbigel NH (1995) Macrolides and clindamycin. In: GL Mandell, JE Bennett, R Dolin (eds):Principles and practice of infectious diseases. Churchill Livingstone, New York, 334–346Google Scholar
  3. 3.
    Finch RG (1997) Overview of the clinical use of macrolides and streptogramins. In: SH Zinner, LS Young, JF Acar, HC Neu (eds):Expanding indications for the new macrolides,azalides,and streptogramins. Marcel Dekker, New York, 3–26Google Scholar
  4. 4.
    McGuire JM, Bunch RL, Anderson RC, Boaz HE, Flynn EH, Powell HM, Smith JW (1952) “Ilotycin,” a new antibiotic.Antibiot & Chemother 2: 281–284Google Scholar
  5. 5.
    Harris DR, McGeachin SG, Mills HH (1965) The structure and stereochemistry of erythromycin A.Tetrahedron Lett 679–685Google Scholar
  6. 6.
    Washington JA II, Wilson WR (1985) Erythromycin: a microbial and clinical perspective after 30 years of clinical use (part I).Mayo Clin Proc 60: 189–203PubMedGoogle Scholar
  7. 7.
    Washington JA II, Wilson WR (1985) Erythromycin: a microbial and clinical perspective after 30 years of clinical use (part II).Mayo Clin Proc 60: 271–278PubMedGoogle Scholar
  8. 8.
    Kirst HA (1992) Antibiotics (macrolides). In: M Howe-Grant (ed):Kirk-Othmer encyclopedia of,chemical technology 4th edition, John Wiley & Sons, New York, 169–213Google Scholar
  9. 9.
    Nakayama I (1984) Macrolides in clinical practice. In: S Omura (ed):Macrolide antibiotics:chemistry,biology,and practice. Academic Press, Orlando, FL, 261–300Google Scholar
  10. 10.
    Kirst HA (1994) Semi-synthetic derivatives of 16-membered macrolide antibiotics. In: GP Ellis, DK Luscombe (eds):Prog Med Chem 31: 265–295Google Scholar
  11. 11.
    Osono T, Oka Y, Watanabe S, Numazaki Y, Moriyama K, Ishida H, Suzaki K, Okami Y, Umezawa H (1967) A new antibiotic, josamycin.J Antibiot (Ser. A) 20: 174–180PubMedGoogle Scholar
  12. 12.
    Omura S, Hironaka Y, Hata T (1970) Chemistry of leucomycin. IX. Identification of leucomycin A3 with josamycin.J Antibiot 23: 511–513PubMedCrossRefGoogle Scholar
  13. 13.
    Omura 5, Nakagawa A, Neszmelyi A, Gero SD, Sepulchre AM, Piriou F, Lukacs G (1975) Carbon-13 nuclear magnetic resonance spectral analysis of 16-membered macrolide antibiotics.J Am Chem Soc 97: 4001–4009PubMedCrossRefGoogle Scholar
  14. 14.
    Rubinstein E, Keller N (1998) Spiramycin renaissance.J Antimicrob Chemother 42: 572–576PubMedCrossRefGoogle Scholar
  15. 15.
    Carbon C (1993) Clinical efficacy and place of spiramycin in the treatment of acute respiratory-tract infections. Drug Investigation 6: 35–42CrossRefGoogle Scholar
  16. 16.
    Davey P, Pechere J-C, Speller D (eds) (1988) Spiramycin reassessed.J Antimicrob Chemother 22 (Suppl B)Google Scholar
  17. 17.
    Prescott JF, Baggot JD (eds) (1993)Antimicrobial therapy in veterinary medicine. Iowa State University Press, Ames, IAGoogle Scholar
  18. 18.
    Kirst HA (1997) Macrolide antibiotics in food-animal health.Exp Opin Invest Drugs 6: 103–117CrossRefGoogle Scholar
  19. 19.
    Wilson RC (1984) Macrolides in veterinary practice. In: S. Omura (ed):Macrolide antibiotics: chemistry,biology,and practice. Academic Press, Orlando, FL, 301–347Google Scholar
  20. 20.
    Omura S, Matsubara H, Nakagawa A, Furusaki A, Matsumoto T (1980) X-ray crystallography of protylonolide and absolute configuration of tylosin.J Antibiot 33: 915–917PubMedCrossRefGoogle Scholar
  21. 21.
    Jones ND, Chaney MO, Kirst HA, Wild GM, Baltz RH, Hamill RL, Paschal JW (1982) Novel fermentation products fromStreptomyces fradiae: X-ray crystal structure of 5–0-mycarosyltylactone and proof of the absolute configuration of tylosin.J Antibiot 35: 420–425PubMedCrossRefGoogle Scholar
  22. 22.
    Somogyi AA, Bochner F, Hetzel D, Williams DB (1995) Evaluation of the intestinal-absorption of erythromycin in man.Pharmaceut Res 12: 149–154CrossRefGoogle Scholar
  23. 23.
    Kirst HA (1993) Semi-synthetic derivatives of erythromycin. In: GP Ellis, DK Luscombe (eds):Prog Med Chem 30: 57–88Google Scholar
  24. 24.
    Murphy HW (1953) Esters of erythromycin. In:Antibiotics Annual 1953–1954. Medical Encyclopedia Inc., New York, 500–513Google Scholar
  25. 25.
    Stephens VC, Conine JW, Murphy HW (1959) Esters of erythromycin IV.J Amer Pharm Assoc 48: 620–622CrossRefGoogle Scholar
  26. 26.
    Griffith RS (1986) Pharmacology of erythromycin in adults.Pediatric Infect Dis 5: 130–140CrossRefGoogle Scholar
  27. 27.
    Steffansen B, Bundgaard H (1989) Erythromycin prodrugs: kinetics of hydrolysis of erythromycin and various erythromycin 2’-esters in aqueous solution and human plasma.Int J Pharmaceutics 56: 159–168CrossRefGoogle Scholar
  28. 28.
    Taskinen J, Ottoila P (1988) Hydrolysis of 2’-esters of erythromycin.J Antimicrob Chemother 21 (Suppl D): 1–8PubMedCrossRefGoogle Scholar
  29. 29.
    Tardrew PL, Mao JHC, Kenney D (1969) Antibacterial activity of 2’-esters of erythromycin.Appl Microbiol 18: 159–165PubMedGoogle Scholar
  30. 30.
    Kurath P, Jones PH, Egan RS, Perun TJ (1971) Acid degradation of erythromycin A and erythromycin B.Experientia 27: 362PubMedCrossRefGoogle Scholar
  31. 31.
    Cachet Th, Van den Mooter G, Hauchecorne R, Vinckier C, Hoogmartens J (1989) Decomposition kinetics of erythromycin-A in acidic aqueous solutions.Int J Pharmaceut 55: 59–65CrossRefGoogle Scholar
  32. 32.
    Vinckier C, Hauchecorne R, Cachet Th, Van den Mooter G, Hoogmartens J (1989) A new mechanism for the decomposition of erythromycin-A in acidic aqueous solutions.Int.1 Pharmaceut 55: 67–76CrossRefGoogle Scholar
  33. 33.
    Slawinski W, Bojarska-Dahlig H, Glabski T, Dziegielewska I, Biedrzycki M, Naperty S (1975) The structure of erythromycin A cyclic carbonate.Rec Tray Chim Pays-Bas 94: 236–238CrossRefGoogle Scholar
  34. 34.
    Bojarska-Dahlig H (1989) Chemical modifications of the macrolide antibiotics.Prog Indust Microbiol 27: 299–314Google Scholar
  35. 35.
    Alvarez-Elcoro S, Enzler MJ (1999) The macrolides: erythromycin, clarithromycin, and azithromycin.Mayo Clin Proc 74: 613–634PubMedCrossRefGoogle Scholar
  36. 36.
    Carbon C, Poole MD (1999) The role of newer macrolides in the treatment of community-acquired respiratory tract infection. A review of experimental and clinical dataJ Chemother 11: 107–118PubMedGoogle Scholar
  37. 37.
    McConnell SA, Amsden GW (1999) Review and comparison of advanced-generation macrolides clarithromycin and dirithromycin.Pharmacother 19: 404–415CrossRefGoogle Scholar
  38. 38.
    Boswell FJ, Wise R (1998) Advances in the macrolides and quinolones.Infect Dis Clin North America 12: 647–670CrossRefGoogle Scholar
  39. 39.
    Carbon C (1998) Pharmacodynamics of macrolides, azalides, and streptogramins: effect on extracellular pathogens.Clin Infect Dis 27: 28–32PubMedCrossRefGoogle Scholar
  40. 40.
    Amsden GW (1995) Macrolides versus azalides: a drug interaction update.Ann Pharmacother 29: 906–917PubMedGoogle Scholar
  41. 41.
    Omoto S, Iwamatsu K, Inouye S, Niida T (1976) Modifications of a macrolide antibiotic midecamycin (SF-837).J Antibiot 29: 536–548PubMedCrossRefGoogle Scholar
  42. 42.
    Sakakibara H, Okekawa 0, Fujiwara T, Otani M, Omura S (1981) Acyl derivatives of 16-membered macrolides.J Antibiot 34: 1001–1010PubMedCrossRefGoogle Scholar
  43. 43.
    Holliday SM, Faulds D (1993) Miocamycin.Drugs 46: 720–745PubMedCrossRefGoogle Scholar
  44. 44.
    Prous JR (ed) (1983) Miokamycin.Drugs of the Future 8: 790–792Google Scholar
  45. 45.
    Zhao XJ, Koyama E, Ishizaki T (1999) Anin vitro study on the metabolism and possible drug interactions of rokitamycin, a macrolide antibiotic, using human liver microsomes.Drug Metab Dispos 27: 776–785PubMedGoogle Scholar
  46. 46.
    Benoni G, Cuzzolin L, Puchetti V, Bertrand C, Calvelli C, Mocella S, Fonio W, Mornatti R, Parini J (1992) Rokitamycin plasma kinetics and penetration into bronchial secretions in adult bronchitis patients.Curr Ther Res 52: 600–607CrossRefGoogle Scholar
  47. 47.
    Prous JR (ed) (1985) TMS-19Q.Drugs of the Future 10: 486–489Google Scholar
  48. 48.
    Tsuchiya M, Sawa T, Takeuchi T, Umezawa H, Okamoto R (1982) Binding of 3–0-acety1–4“-0- isovaleryltylosin to ribosomes from a macrolide-resistant strain ofStaphylococcus aureus. J Antibiot 35: 673–679CrossRefGoogle Scholar
  49. 49.
    Okamoto R, Tsuchiya M, Nomura H, Iguchi H, Kiyoshima K, Hod S, Inui T, Sawa T, Takeuchi T, Umezawa H (1980) Biological properties of new acyl derivatives of tylosin.J Antibiot 33: 1309–1315PubMedCrossRefGoogle Scholar
  50. 50.
    Kirst HA (1996) Expanding the role of macrolide compounds as therapeutic agents. In: M Iqbal Choudhary (ed):Progress in medicinal chemistry Vol 1, Harwood Academic Publishers, Amsterdam, 1–47Google Scholar
  51. 51.
    Vogel GJ, Laudert SB, Zimmermann A, Guthrie CA, Mechor GD, Moore GM (1998) Effects of tilmicosin on acute undifferentiated respiratory tract disease in newly arrived feedlot cattle.J Am Vet Med Assoc 212: 1919–1924PubMedGoogle Scholar
  52. 52.
    Huwyler U, Reeve-Johnson L, Korfitsen J, Liesegang A, Wanner M (1999) Efficacy evaluation of the use of oral tilmicosin in pneumonic calves.Schweiz Arch Tierheilk 141: 203–208Google Scholar
  53. 53.
    Moore GM, Basson RP, Tonkinson LV (1996) Clinical field trials with tilmicosin phosphate in feed for the control of naturally acquired pneumonia caused byActinobacillus pleuropneumoniae andPasteurella multocida in swine.Am J Vet Res 57: 224–228PubMedGoogle Scholar
  54. 54.
    Charleston B, Gate JJ, Aitken IA, Reeve-Johnson L (1998) Assessment of the efficacy of tilmicosin as a treatment forMycoplasma gallisepticum infections in chickens.Avian Pathol 27: 190–195PubMedCrossRefGoogle Scholar
  55. 55.
    Jordan FTW, Forrester CA, Hodge A, Reeve-Johnson LG (1999) The comparison of an aqueous preparation of tilmicosin with tylosin in the treatment ofMycoplasma gallisepticum infection of turkey poults.Avian Diseases 43: 521–525PubMedCrossRefGoogle Scholar
  56. 56.
    Modric S, Webb AI, Derendorf H (1998) Pharmacokinetics and pharmacodynamics of tilmicosin in sheep and cattle.J Vet Pharmacol Therap 21: 444–452CrossRefGoogle Scholar
  57. 57.
    Scorneaux B, Shryock TR (1999) Intracellular accumulation, subcellular distribution, and efflux of tilmicosin in bovine mammary, blood, and lung cells.J Dairy Sci 82: 1202–1212PubMedCrossRefGoogle Scholar
  58. 58.
    Scorneaux B, Shryock TR (1999) The determination of the cellular volume of avian, porcine and bovine phagocytes and bovine mammary epithelial cells and its relationship to uptake of tilmicosin.J Vet Pharmacol Therap 22: 6–12CrossRefGoogle Scholar
  59. 59.
    Chin AC, Morck DW, Merrill JK, Ceri H, Olson ME, Read RR, Dick P, Buret AG (1998) Anti-inflammatory benefits of tilmicosin in calves withPasteurella haemolytica-infected lungs. AmJ Vet Res 59: 765–771PubMedGoogle Scholar
  60. 60.
    McFarland JW, Hecker SJ, Jaynes BH, Jefson MR, Lundy KM, Vu CB, Glazer EA, Froshauer SA, Hayashi SF, Kamicker BJ, Reese CP, Olson JA (1997) Repromicin derivatives with potent antibacterial activity againstPasteurella multocida. J Med Chem 40: 1041–1045Google Scholar
  61. 61.
    Norcia Lit, Seibel SB, Kamicker BJ, Lemay MA, Lilley SC, Hecker SJ, Bergeron JM, Retsema JA, Hayashi SF (1998)In vitro microbiological characterization of novel macrolide CP-163,505 for animal health specific use.J Antibiot 51: 136–144CrossRefGoogle Scholar
  62. 62.
    Linhares MC, Harran LP, Strelevitz TJ, Gauthier JW, Cole MJ, Hassfurther RL, Risk JE (1998) Disposition and metabolism of the novel macrolide antibiotic CP-163505 in cattle.J Vet Pharmacol Therap 21: 99–106CrossRefGoogle Scholar
  63. 63.
    McOrist S, Morgan J, Veenhuizen MF, Lawrence K, Kroger HW (1997) Oral administration of tylosin phosphate for treatment and prevention of proliferative enteropathy in pigs.Am J Vet Res 58: 136–139PubMedGoogle Scholar
  64. 64.
    Moore GM, Mowrey DH, Veenhuizen MF, Watkins LE (1998) Evaluating a natural outbreak of porcine proliferative enteropathy and treatment with tylosin in the grow-finish phase.Swine Health Production 6: 67–72Google Scholar
  65. 65.
    Weisblum B (1998) Macrolide resistance.Drug Resistance Updates 1: 29–41PubMedCrossRefGoogle Scholar
  66. 66.
    Virk A, Steckelberg JM (2000) Clinical aspects of antimicrobial resistance.Mayo Clin Proc 75: 200–214PubMedGoogle Scholar
  67. 67.
    Moellering RC Jr (1998) Emerging resistance with gram-positive aerobic infections: Where do we go from here?Clin Infect Dis 26: 1177–1178PubMedCrossRefGoogle Scholar
  68. 68.
    Mitscher LA (1999) Introduction to special issue on multiple drug resistance.Med Res Rev 19: 475–476PubMedCrossRefGoogle Scholar
  69. 69.
    Agouridas C, Bonnefoy A, Chantot JF (1994) Ketolides, a new distinct semi-synthetic class of macrolides:in vitro andin vivo antibacterial activity. Book of Abstracts of the 34th Intersci Conf Antimicrob Agents Chemother, Oct. 4–7.1994, Orlando, FL, abstr. F-168, American Society for Microbiology, Washington, D.C.Google Scholar
  70. 70.
    Agouridas C, Benedetti Y, Denis A, Fromentin C, Gouin D’Ambrieres S, Le Martret0, Chantot JF (1994) Ketolides, a new distinct semi-synthetic class of macrolides. Book of Abstracts of the 34th Intersci Conf Antimicrob Agents Chemother, Oct. 4–7.1994, Orlando, FL, abstr. F-164, American Society for Microbiology, Washington, D.C.Google Scholar
  71. 71.
    Agouridas C, Denis A, Auger JM, Benedetti Y, Bonnefoy A, Bretin F, Chantot JF, Dussarat A, Fromentin C, et al (1998) Synthesis and antibacterial activity of ketolides (6–0-methy1–3- oxoerythromycin derivatives): a new class of antibacterials highly potent against macrolideresistant and -susceptible respiratory pathogens.J Med Chem 41: 4080–4100PubMedCrossRefGoogle Scholar
  72. 72.
    Kaneko T, McArthur H, Sutcliffe J (2000) Recent developments in the area of macrolide antibiotics.Exp Opin Ther Patents 10: 403–425CrossRefGoogle Scholar
  73. 73.
    Chu DTW (1999) Recent progress in novel macrolides, quinolones, and 2-pyridones to overcome bacterial resistance.Med Res Rev 19: 497–520PubMedCrossRefGoogle Scholar
  74. 74.
    Chu DTW (1999) Recent developments in macrolides and ketolides.Curr Opin Microbiol 2: 467–474PubMedCrossRefGoogle Scholar
  75. 75.
    Kirst HA (1998) Recent developments with macrolide antibiotics.Exp OpinTher Patents 8: 111–120CrossRefGoogle Scholar
  76. 76.
    Chu DTW (1995) Recent developments in 14- and 15-membered macrolides.Exp Opin Invest Drugs 4: 65–94CrossRefGoogle Scholar
  77. 77.
    Hansen LH, Mauvais P, Douthwaite S (1999) The macrolide-ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA.Molec Microbiol 31: 623–631CrossRefGoogle Scholar
  78. 78.
    Bertho G, Gharbi-Benarous J, Delaforge M, Lang C, Parent A, Girault JP (1998) Conformational analysis of ketolide conformations of RU 004 in solution and bound to bacterial ribosomes.J Med Chem 41: 3373–3386PubMedCrossRefGoogle Scholar
  79. 79.
    Bertho G, Ladam P, Gharbi-Benarous J, Delaforge M, Girault JP (1998) Solution conformation of methylated macrolide antibiotics roxithromycin and erythromycin using NMR and molecular modelling.Int J Biol Macromol 22: 103–127PubMedCrossRefGoogle Scholar
  80. 80.
    Montenez JP, Van Bambeke F, Piret J, Brasseur R, Tulkens PM, Mingeot-Leclercq MP (1999) Interactions of macrolide antibiotics (erythromycin A, roxithromycin, erythromycylamine [dirithromycin], and azithromycin) with phospholipids: computer-aided conformational analysis on acellular and cell culture models.Toxicol Appl Pharmacol 156: 129–140PubMedCrossRefGoogle Scholar
  81. 81.
    Mordi MN, Pelta MD, Boote V, Morris GA, Barber J (2000) Acid-catalyzed degradation of clarithromycin and erythromycin B: a comparative study using NMR spectroscopy.J Med Chem 43: 467–474PubMedCrossRefGoogle Scholar
  82. 82.
    Cundliffe E (1999) Organization and control of the tylosin-biosynthetic genes ofStreptomyces fradiae. Actinomycetologica 13: 68–75CrossRefGoogle Scholar
  83. 83.
    Hopwood DA (1997) Genetic contributions to understanding polyketide synthases.Chem Rev 97: 2465–2497PubMedCrossRefGoogle Scholar
  84. 84.
    Khosla C, Gokhale RS, Jacobsen JR, Cane DE (1999) Tolerance and specificity of polyketide synthases.Annu Rev Biochem 68: 219–253PubMedCrossRefGoogle Scholar
  85. 85.
    Brown MS, Dirlam JP, McArthur HAI, McCormick EL, Morse BK, Murphy PA, O’Connell TN, Pacey M, Rescek DM, Ruddock J, Wax RG (1999) Production of 6-deoxy-13-cyclopropylerythromycin B bySaccharopolyspora erythraea NRRL 18643.J Antibiot 52: 742–747PubMedCrossRefGoogle Scholar
  86. 86.
    Arisawa A, Tsunekawa H (2001) Direct fermentative production of acyltylosins by genetically engineered strains ofStreptomyces fradiae. In: HA Kirst, W-K Yeh, M Zmijewski (eds):Enzyme technologies for pharmaceutical and biotechnological applications Marcel Dekker, New York; 89–111Google Scholar
  87. 87.
    Katz L, McDaniel R (1999) Novel macrolides through genetic engineering.Med Res Rev 19: 543–558PubMedCrossRefGoogle Scholar
  88. 88.
    McDaniel RN, Khosla C (2001) Understanding and exploiting bacterial polyketide synthases. In: HA Kirst, W-K Yeh, M Zmijewski (eds):Enzyme technologies for pharmaceutical and biotechnological applications Marcel Dekker, New York; 397–426Google Scholar
  89. 89.
    Weissman KJ, Staunton J (2001) Polyketide synthases: analysis and use in synthesis. In: HA Kirst, W-K Yeh, M Zmijewski (eds):Enzyme technologies for pharmaceutical and biotechnological applications Marcel Dekker, New York; 427–470Google Scholar
  90. 90.
    Polk R (1999) Optimal use of modern antibiotics: emerging trends.Clin Infect Dis 29: 264–274PubMedCrossRefGoogle Scholar
  91. 91.
    Schentag JJ (1999) Antimicrobial action and pharmacokinetics/pharmacodynamics: the use of AUIC to improve efficacy and avoid resistance.J Chemother 11: 426–439PubMedGoogle Scholar
  92. 92.
    Burke JP, Pestotnik SL (1999) Antibiotic use and microbial resistance in intensive care units: impact of computer-assisted decision support.J Chemother 11: 530–535PubMedGoogle Scholar
  93. 93.
    Kirst H (1991) New macrolides: expanded horizons for an old class of antibiotics.J Antimicrob Chemother 28: 787–790PubMedCrossRefGoogle Scholar
  94. 94.
    Bryskier A, Agouridas C, Chantot J-F (1994) New medical targets for macrolides.Exp Opin Invest Drugs 3: 405–410CrossRefGoogle Scholar
  95. 95.
    Funabashi Y, Maeshiba Y, Inatomi N, Tanayama S, Harada S, Itoh Z, Omura S (1996) Bioactive metabolites of EM574 and EM523, erythromycin derivatives having strong gastrointestinal motor stimulating activity.J Antibiot 49: 794–801PubMedCrossRefGoogle Scholar
  96. 96.
    Clark MJ, Wright T, Bertrand PP, Bornstein JC, Jenkinson KM, Verlinden M, Furness JB (1999) Erythromycin derivatives ABT 229 and GM 611 act on motilin receptors in the rabbit duodenum.Clin Exp Pharmacol Physiol 26: 242–245PubMedCrossRefGoogle Scholar
  97. 97.
    Khiat A, Boulanger Y (1998) Identification of the motilide pharmacophore using quantitative structure activity relationships.J Peptide Res 52: 321–328CrossRefGoogle Scholar
  98. 98.
    Shryock TR, Mortensen JE, Baumholtz M (1998) The effects of macrolides on the expression of bacterial virulence mechanisms.J Antimicrob Chemother 41: 505–512PubMedCrossRefGoogle Scholar
  99. 99.
    Van Vlem B, Vanholder R, De Paepe P, Vogelaers D, Ringoir S (1996) Immunomodulating effects of antibiotics: literature review.Infection 24: 275–291PubMedCrossRefGoogle Scholar
  100. 100.
    Khan AA, Slifer TR, Araujo FG, Remington JS (1999) Effect of clarithromycin and azithromycin on production of cytokines by human monocytes.Int J Antimicrob Agents 11: 121–132PubMedCrossRefGoogle Scholar
  101. 101.
    Labro M-T (1998) Immunological effects of macrolides.Curr Opin Infect Dis 11: 681–688PubMedCrossRefGoogle Scholar
  102. 102.
    Wales D, Woodhead M (1999) The anti-inflammatory effects of macrolides.Eur Respir J 12: 5763Google Scholar
  103. 103.
    Ianaro A, Ialenti A, Maffia P, Sautebin L, Rombola L, Carnuccio R, Iuvone T, D’ Acquisto F, Di Rosa M (2000) Anti-inflammatory activity of macrolide antibiotics.J Pharmacol Exp Therapeut 292: 156–163Google Scholar
  104. 104.
    Howe RA, Spencer RC (1997) Macrolides for the treatment ofPseudomonas aeruginosa infections?J Antimicrob Chemother 40: 153–155PubMedCrossRefGoogle Scholar
  105. 105.
    Nakamura H, Fujishima S, Inoue T, Ohkubo Y, Soejima K, Waki Y, Mori M, Urano T, Sakamaki F, Tasaka S et al (1999) Clinical and immunoregulatory effects of roxithromycin therapy for chronic respiratory tract infection.Eur Respir J 13: 137–1379CrossRefGoogle Scholar
  106. 106.
    Shoji T, Yoshida S, Sakamoto H, Hasegawa H, Nakagawa H, Amayasu H (1999) Anti-inflammatory effect of roxithromycin in patients with aspirin-intolerant asthma.Clin Exp Allergy 29: 950–956PubMedCrossRefGoogle Scholar
  107. 107.
    Cook PJ (1999) Antimicrobial therapy forChlamydia pneumoniae: i ts potential role in atherosclerosis and asthma.J Antimicrob Chemother 44: 145–148PubMedCrossRefGoogle Scholar
  108. 108.
    Sassa K, Mizushima Y, Fujishita T, Oosaki R, Kobayashi M (1999) Therapeutic effect of clarithromycin on a transplanted tumor in rats.Antimicrob Agents Chemother 43: 67–72PubMedGoogle Scholar
  109. 109.
    Hamada K, Mikasa K, Yunou Y, Kurioka T, Majima T, Narita N, Kita E (2000) Adjuvant effect of clarithromycin on chemotherapy for murine lung cancer.Chemother 46: 49–61CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Herbert A. Kirst
    • 1
  1. 1.Elanco Animal Health Research & DevelopmentGreenfieldUSA

Personalised recommendations