Advertisement

Biosynthesis of the macrolide antibiotic, tylosin

  • Eric Cundliffe
Chapter
Part of the Milestones in Drug Therapy MDT book series (MDT)

Abstract

Tylosin is produced by Streptomyces fradiae via a combination of polyketide and deoxyhexose metabolism. Elucidation of the biosynthetic route to tylosin involved tracer incorporation studies and bioconversion analysis, with heavy reliance on the use of mutants of S. fradiae blocked in tylosin production [1-5]. The primary product of the Ty1G polyketide synthase is a 16-atom lactone (protylonolide, synonym tylactone) that subsequently acquires three deoxyhexose substituents (D-mycaminose, 6-deoxy-D-allose and L-mycarose) in a preferred but not obligatory order, although mycaminose is always added first. Thereafter, the deoxyallose moiety is converted to D-mycinose via bis-O-methylation. The polyketide lactone is also hydroxylated following attachment of the first sugar. This occurs at C-20 and C23, the latter being the site at which deoxyallose subsequently is added (Fig.1). Complementation of blocked mutants with cloned DNA fragments [6, 7] allowed the mapping of 13 tyl loci within the S. fradiae genome, alongside other attempts to identify the tylosin-production genes. Success in this regard eventually resulted from two convergent approaches instigated at Lilly Research Laboratories, Indianapolis.

Keywords

Macrolide Antibiotic Resistance Determinant Thioesterase Activity Lilly Research Laboratory Tylosin Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Omura S, Takeshima H, Nakagawa A, Miyazawa J, Piriou F, Lukacs G (1977) Studies on the biosynthesis of 16-membered macrolide antibiotics using carbon-13 nuclear magnetic resonance spectroscopy. Biochemistry 16: 2860–2866PubMedCrossRefGoogle Scholar
  2. 2.
    Baltz RH, Seno ET (1981) Properties of Streptomyces fradiae mutants blocked in biosynthesis of the macrolide antibiotic tylosin. Antimicrob Agents Chemother 20: 214–225PubMedCrossRefGoogle Scholar
  3. 3.
    Omura S, Sadakane N, Matsubara H (1982) Bioconversion and biosynthesis of 16-membered macrolide antibiotics. XXII. Biosynthesis of tylosin after protylonolide formation. Chem Pharm Bull 30: 223–229CrossRefGoogle Scholar
  4. 4.
    Omura S, Tanaka H, Tsukui M (1982) Biosynthesis of tylosin: oxidations of 5–0-mycaminosyl-protylonolide at C-20 and C-23 with a cell-free extract of Streptomyces fradiae. Biochem Biophys Res Comm 107: 554–560CrossRefGoogle Scholar
  5. 5.
    Baltz RH, Seno ET, Stonesifer J, Wild GM (1983) Biosynthesis of the macrolide antibiotic tylosin. A preferred pathway from tylactone to tylosin. J Antibiot 36: 131–141Google Scholar
  6. 6.
    Fishman SE, Cox K, Larson JL, Reynolds PA, Seno ET, Yeh W-K, Van Frank R, Hershberger CL (1987) Cloning genes for the biosynthesis of a macrolide antibiotic. Proc Nati Acad Sci USA 84: 8248–8252CrossRefGoogle Scholar
  7. 7.
    Beckmann RJ, Cox K, Seno ET (1989) A cluster of tylosin biosynthetic genes is interrupted by a structurally unstable segment containing four repeated sequences. In: CL Hershberger, SW Queener, G Hegeman (eds): Genetics and molecular biology of industrial microorganisms. American Society for Microbiology, Washington DC, 176–186Google Scholar
  8. 8.
    Birmingham VA, Cox KL, Larson JL, Fishman SE, Hershberger CL, Seno ET (1986) Cloning and expression of a tylosin resistance gene from a tylosin-producing strain of Streptomyces fradiae. Mol Gen Genet 204: 532–539CrossRefGoogle Scholar
  9. 9.
    Baltz RH, Seno ET (1988) Genetics of Streptomyces fradiae and tylosin biosynthesis. Annu Rev Microbiol 42: 547–574PubMedCrossRefGoogle Scholar
  10. 10.
    Szoke PA, Reynolds PA, Rosteck Jr PR, Kreuzman AJ, Yeh W-K, Becker GW, Hershberger CL (1989) Sequence analysis of tylosin biosynthetic genes. Abstracts of Posters of Annual Meeting of American Society for Microbiology, New Orleans, abstract # H-76Google Scholar
  11. 11.
    Rosteck Jr, PR, Reynolds PA, Hershberger CL (1991) Homology between proteins controlling Streptomyces fradiae tylosin resistance and ATP-binding transport. Gene 102: 27–32PubMedCrossRefGoogle Scholar
  12. 12.
    Merson-Davies LA, Cundliffe E (1994) Analysis of five tylosin biosynthetic genes from the tylIBA region of the Streptomyces fradiae genome. Mol Microbiol 13: 349–355PubMedCrossRefGoogle Scholar
  13. 13.
    Gandecha AR, Cundliffe E (1996) Molecular analysis of tlrD an MLS resistance determinant from the tylosin producer, Streptomyces fradiae. Gene 180: 173–176Google Scholar
  14. 14.
    Gandecha AR, Large SL, Cundliffe E (1997) Analysis of four tylosin biosynthetic genes from the tylLM region of the Streptomyces fradiae genome. Gene 184: 197–203PubMedCrossRefGoogle Scholar
  15. 15.
    Bate N, Butler AR, Gandecha AR, Cundliffe E (1999) Multiple regulatory genes in the tylosinbiosynthetic cluster of Streptomyces fradiae. Chem Biol 6: 617–624CrossRefGoogle Scholar
  16. 16.
    Bate N, Cundliffe E (1999) The mycinose-biosynthetic genes of Streptomyces fradiae producer of tylosin. J Ind Microbiol Biotechnol 23: 118–122PubMedCrossRefGoogle Scholar
  17. 17.
    Bate N, Butler AR, Smith IP, Cundliffe E (2000) The mycarose-biosynthetic genes of Streptomyces fradiae producer of tylosin. Microbiology 146: 139–146PubMedGoogle Scholar
  18. 18.
    Chater KF, Bibb MJ (1997) Regulation of bacterial antibiotic production. In: H Kleinkauf, H von Diiren (eds): Biotechnology, vol. 7; Products of secondary metabolism. VCH, Weinheim, Germany, 59–105Google Scholar
  19. 19.
    Geistlich M, Losick R, Turner JR, Rao RN (1992) Characterization of a novel regulatory gene governing the expression of a polyketide synthase gene in Streptomyces ambofaciens. Mol Microbiol 6: 2019–2029CrossRefGoogle Scholar
  20. 20.
    Arisawa A, Kawamura N, Tsunekawa H, Okamura K, Tone H, Okamoto R (1993) Cloning and nucleotide sequences of two genes involved in the 4“-0-acylation of macrolide antibiotics from Streptomyces thermotolerans. Biosci Biotech Biochem 57: 2020–2025CrossRefGoogle Scholar
  21. 21.
    Wietzorrek A, Bibb M (1997) A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol 25: 1177–1184CrossRefGoogle Scholar
  22. 22.
    Kinoshita H, Ipposhi H, Okamoto S, Nakano H, Nihira T, Yamada Y (1997) Butyrolactone autoregulator receptor protein (BarA) as a transcriptional regulator in Streptomyces virginiae. J Bacteriol 179: 6986–6993Google Scholar
  23. 23.
    Nakano H, Takehara E, Nihira T Yamada Y (1998) Gene replacement analysis of the Streptomyces virginiae barA gene encoding the butyrolactone autoregulator receptor reveals that BarA acts as a repressor in virginiamycin biosynthesis. J Bacteriol 180: 3317–3322PubMedGoogle Scholar
  24. 24.
    Horinouchi S, Beppu T (1994) A-factor as a microbial hormone that controls cellular differentiation and secondary metabolism in Streptomyces griseus. Mol Microbiol 12: 859–864CrossRefGoogle Scholar
  25. 25.
    Ohnishi Y, Kameyama S, Onaka H, Horinouchi S (1999) The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol Microbiol 34: 102–111PubMedCrossRefGoogle Scholar
  26. 26.
    Fish SA, Cundliffe E (1997) Stimulation of polyketide metabolism in Streptomyces fradiae by tylosin and its glycosylated precursors. Microbiology 143: 3871–3876PubMedCrossRefGoogle Scholar
  27. 27.
    Bevitt DJ, Cortes J, Haydock SF, Leadlay PF (1992) 6-Deoxyerythronolide B synthase from Saccharopolyspora erythraea. Cloning of the structural gene, sequence analysis and inferred domain structure of the multifunctional enzyme. Eur J Biochem 204: 39–49PubMedCrossRefGoogle Scholar
  28. 28.
    Donadio S, Katz L (1992) Organization of the enzymatic domains in the multifunctional polyketide synthase involved in erythromycin biosynthesis in Saccharopolyspora erythraea. Gene 111: 51–60Google Scholar
  29. 29.
    Cortes J, Wiesmann KEH, Roberts GA, Brown MJB, Staunton J, Leadlay PF (1995) Repositioning of a domain in a modular polyketide synthase to promote specific chain cleavage. Science 268: 1487–1489PubMedCrossRefGoogle Scholar
  30. 30.
    Kao CM, Luo G, Katz L, Cane DE, Khosla C (1995) Manipulation of macrolide ring size by directed mutagenesis of a modular polyketide synthase. J Am Chem Soc 117: 9105–9106CrossRefGoogle Scholar
  31. 31.
    Butler AR, Bate N, Cundliffe E (1999) Impact of thioesterase activity on tylosin biosynthesis in Streptomyces fradiae. Chem Biol 6: 287–292CrossRefGoogle Scholar
  32. 32.
    Schneider A, Marahiel MA (1998) Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis. Arch Microbial 169: 404–410CrossRefGoogle Scholar
  33. 33.
    Cundliffe E (1989) How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol 43: 207–233PubMedCrossRefGoogle Scholar
  34. 34.
    Zalacain M, Cundliffe E (1991) Cloning of tIrD a fourth resistance gene, from the tylosin producer, Streptomyces fradiae. Gene 97: 137–142Google Scholar
  35. 35.
    Kelemen GH, Zalacain M, Culebras E, Seno ET, Cundliffe E (1994) Transcriptional attenuation control of the tylosin resistance gene tIrA in Streptomyces fradiae. Mol Microbiol 14: 833–842CrossRefGoogle Scholar
  36. 36.
    Wilson VTW, Cundliffe E (1999) Molecular analysis of tlrB an antibiotic-resistance gene from tylosin-producing Streptomyces fradiae and discovery of a novel resistance mechanism. J Antibiot 52: 288–296PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Eric Cundliffe
    • 1
  1. 1.Department of BiochemistryUniversity of LeicesterLeicesterUK

Personalised recommendations