In vitro activity of macrolides against traditional susceptible bacteria

  • Adel Ben Ali
  • Fred W. Goldstein
  • Jacques F. Acar
Part of the Milestones in Drug Therapy MDT book series (MDT)


Antibiotics belonging to the macrolide class have been in use for almost 40 years and are considered to be among the best-tolerated antibiotics.


Antimicrob Agent Bordetella Pertussis Moraxella Catarrhalis Eikenella Corrodens Haemophilus Ducreyi 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Felmingham D, Grlineberg RN, and the Alexander Project Group (2000) The Alexander Project 1996–1997: latest susceptibility data from this international study of bacterial pathogens from community-acquired lower respiratory tract infections. J Antimicrob Chemother 45: 191–20CrossRefGoogle Scholar
  2. 2.
    Schmitz FJ, Verhoef J, Fluit AC, and the Sentry Participants Group (1999) Prevalence of resistance to MLS antibiotics in 20 european university hospitals participating in the european SENTRY surveillance programme. J Antimicrob Chemother 43: 783–792CrossRefGoogle Scholar
  3. 3.
    Shortridge D, Doern GV, Brueggemann AB, Beyer JM, Flamm RK (1999) Prevalence of macrolide resistance mechanisms in Streptococcus pneumoniae isolates from a multicenter antibiotic resistance surveillance study conducted in the United States in 1994–1995. Clin Infect Dis 29: 1186–1188PubMedCrossRefGoogle Scholar
  4. 4.
    Weisblum B (1985) Inducible resistance to macrolides, lincosamides and streptogramin type B antibiotics: the resistance phenotype, its biological diversity, and structural elements that regulate expression. A review . J Antimicrob Chemother 16 (Suppl. A): 63–90PubMedCrossRefGoogle Scholar
  5. 5.
    Barry AL, Fuchs PC, Brown SD (1998) Susceptibilities to RPR 106,972, quinupristin/dalfopristin and erythromycin among recent clinical isolates of enterococci, staphylococci and streptococci from north american medical centres. J Antimicrob Chemother 42: 651–655PubMedCrossRefGoogle Scholar
  6. 6.
    Jamjian C, Biedenbach DJ, Jones RN (1997) In vitro evaluation of a novel ketolide antimicrobial agent, RU-64004 . Antimicrob Agents Chemother 41(2): 454–459PubMedGoogle Scholar
  7. 7.
    Schmitz FJ, Sadurski R, Kray A, Boos M, Geisel R, Wirer K, Verhoef J, Fluit AC (2000) Prevalence of macrolide-resistance genes in Staphylococcus aureus and Enterococcus faecium isolates from 24 European university hospitals . J Antimicrob Chemother 45: 891–894PubMedCrossRefGoogle Scholar
  8. 8.
    Brueggemann AB, Doern GV, Huynh HK, Wingert EM, Rhomberg PR (2000) In vitro activity of ABT-773, a new ketolide, against recent clinical isolates of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. Antimicrob Agents Chemother 44(2): 447–449PubMedCrossRefGoogle Scholar
  9. 9.
    Boswell FJ, Andrews JM, Ashby JP, Fogarty C, Brenwald NP, Wise R (1998) The in vitro activity of HMR 3647, a new ketolide antimicrobial agent. J Antimicrob Chemother 42: 703–709PubMedCrossRefGoogle Scholar
  10. 10.
    Marshall SA, Erwin ME, Jones RN (2000) Determination of MIC quality control ranges for ABT773, a novel ketolide antimicrobial agent. J Clin Microbiol 38(6): 2462–2463PubMedGoogle Scholar
  11. 11.
    Shortridge D, et al (1999) The In vitro activity of ABT-773 against gram-positive and gram-negative pathogens. ICAAC, Abstract 2136, p. 346. In Abstracts of the 39th ICAAC. American Society for Microbiology, Washington, D.C.Google Scholar
  12. 12.
    Davies TA, Kelly LM, Jacobs M, Appelbaum PC (2000) Antipneumococcal activity of telithromycin by agar dilution, microdilution, E-test, and disk diffusion methodologies. J Clin Microbiol 38(4): 1444–1448PubMedGoogle Scholar
  13. 13.
    Jacobs MR, Bajaksouzian S, Zilles A, Lin G, Pankuch GA, Appelbaum PC (1999) Susceptibilities of Streptococcus pneumoniae and Haemophilus influenzae to 10 oral antimicrobial agents based on pharmacodynamic parameters: 1997 U.S. surveillance study. Antimicrob Agents Chemother 43(8): 1901–1908PubMedGoogle Scholar
  14. 14.
    Nishijima T, Saito Y, Aoki A, Toriya M, Toyonaga Y, Fujii R (1999) Distribution of mefE and ermB genes in macrolide-resistant strains of Streptococcus pneumoniae and their variable susceptibility to various antibiotics. J Antimicrob Chemother 43: 637–643PubMedCrossRefGoogle Scholar
  15. 15.
    Thornsberry C, Ogilvie PT, Holley HP, Sahm DF (1999) Survey of susceptibilities of Streptococcus pneumoniae Haemophylus influenzae and Moraxella catarrhalis isolates to 26 antimicrobial.agents: a prospective U.S. study. Antimicrob Agents Chemother 43 (11): 2612–2623PubMedGoogle Scholar
  16. 16.
    Thornsberry C, Jones ME, Hickey ML, Mauriz Y, Kahn J, Sahm DF (1999) Resistance surveillance of Streptococcus pneumoniae Haemophilus influenzae and Moraxella catarrhalis isolated in the United States, 1997–1998. J Antimicrob Chemother 44: 749–759PubMedCrossRefGoogle Scholar
  17. 17.
    Waites K, Johnson C, Gray B, Edwards K, Crain M, Benjamin W (2000) Use of clindamycin disks to detect macrolide resistance mediated by ermB and mefE in Streptococcus pneumoniae isolates from adults and children. J Clin Microbiol 38 (5): 1731–1734PubMedGoogle Scholar
  18. 18.
    Wootton M, Bowker KE, Janowska A, Holt HA, MacGowan AP (1999) In vitro activity of HMR 3647 against Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis and 13-haemolytic streptococci. J Antimicrob Chemother 44: 445–453PubMedCrossRefGoogle Scholar
  19. 19.
    Jorgensen JH, McElmeel ML (1997) Activity of quinupristin/dalfopristin and its components against Haemophilus influenzae. J Antimicrob Chemother 39(Suppl. A): 69–73PubMedCrossRefGoogle Scholar
  20. 20.
    Brett M, Short P, Beatson S (1998) The comparative in vitro activity of roxithromycin and other antibiotics against Bordetella pertussis. J Antimicrob Chemother 41(Suppl. B): 23–27PubMedCrossRefGoogle Scholar
  21. 21.
    Hoppe JE, Bryskier A (1998) In vitro susceptibilities of Bordetella pertussis and Bordetella parapertussis to two ketolides (HMR 3004 and HMR 3647), four macrolides (azithromycin, clarithromycin, erythromycin A, and roxithromycin), and two ansamycins (rifampicin and rifapentine). Antimicrob Agents Chemother 42(4): 965–966PubMedGoogle Scholar
  22. 22.
    Korgenski EK, Daly JA (1997) Surveillance and detection of erythromycin resistance in Bordetella pertussis isolates recovered from a pediatric population in the intermountain west region of the united states. J Clin Microbiol 35(11): 2989–2991PubMedGoogle Scholar
  23. 23.
    Slaney L, Chubb H, Ronald A, Brunham R (1990) In vitro activity of azithromycin, erythromycin, ciprofloxacin and norfloxacin against Neisseria gonorrhoeae, Haemophilus ducreyi, and Chlamydia trachomatis. J Antimicrob Chemother 25 (Suppl. A): 1–5PubMedCrossRefGoogle Scholar
  24. 24.
    Loo VG, et al 1997. In vitro susceptibility of Helicobacter pylori to six antibiotics. ICAAC, Abstract E 20, p. 117. In Abstracts of the 37 th ICAAC. American Society for Microbiology, Washington, D.CGoogle Scholar
  25. 25.
    Sanchez R, Fernandez-Baca V, Diaz MD, Munoz P, Rodriguez-Creixems M, Bouza E (1994) Evolution of susceptibilities of Campylobacter spp. to quinolones and macrolides. Antimicrob Agents Chemother 38(9): 1879–1888PubMedCrossRefGoogle Scholar
  26. 26.
    Zarazaga M, Saenz Y, Portillo A, Tenorio C, Ruiz-Larrea F, Del Campo R, Baquero F, Torres C (1999) In vitro activities of ketolides HMR3647, macrolides, and other antibiotics against Lactobacillus, Leuconostoc, and Pediococcus isolates. Antimicrob Agents Chemother 43 (12): 3039–3041PubMedGoogle Scholar
  27. 27.
    Moore LS, Schneider B, Holloway WJ (1997) Minimal inhibitory concentrations of quinupristin/ dalfopristin against clinical isolates of Cotynebacterium jeikeium and Listeria monocytogenes. J Antimicrob Chemother 39 (Suppl. A): 67–68PubMedCrossRefGoogle Scholar
  28. 28.
    Soriano F, Fernandez-Roblas R, Calvo R, Garcia-Calvo G (1998) In vitro susceptibilities of aerobic and facultative non-spore-forming gram-positive bacilli to HMR 3647 (RU 66647) and 14 other antimicrobials. Antimicrob Agents Chemother 42 (5): 1028–1033PubMedGoogle Scholar
  29. 29.
    Goldstein EJC, Citron DM, Vreni Merriam C (1999) Linezolid activity compared to those of selected macrolides and other agents against aerobic and anaerobic pathogens isolated from soft tissue bite infections in humans. Antimicrob Agents Chemother 43(6): 1469–1474PubMedGoogle Scholar
  30. 30.
    Knapp JS, Back AF, Babst AF, Taylor D, Rice R (1993) In vitro susceptibility of isolates of Haemophilus ducreyi from Thailand and the United States to currently recommended and newer agents for treatment of chancroid. Antimicrob Agents Chemother 37 (7): 1552–1555PubMedCrossRefGoogle Scholar
  31. 31.
    Credito KL, Ednie LM, Jacobs MR, Appelbaum PC (1999) Activity of Telithromycin (HMR 3647) against anaerobic bacteria compared to those of eight other agents by time-kill methodology. Antimicrob Agents Chemother 43 (8): 2027–2031PubMedGoogle Scholar
  32. 32.
    Ednie LM, Spangler SK, Jacobs MR, Appelbaum PC (1997) Antianaerobic activity of the ketolide RU 64004 compared to activities of four macrolides, five 13-lactams, clindamycin, and metronidazole. Antimicrob Agents Chemother 41 (5): 1037–1041PubMedGoogle Scholar
  33. 33.
    Ednie LM, Jacobs MR, Appelbaum PC (1997) Comparative antianaerobic activities of the ketolides HMR 3647 (RU 66647) and HMR 3004 (RU 64004). Antimicrob Agents Chemother 41: 2019–2022PubMedGoogle Scholar
  34. 34.
    Goldstein EJC, Citron DM, Gerardo SH, Hudspeth M, Vreni Merriam C (1998) Activities of HMR 3004 (RU 64004) and HMR 3647 (RU 66647) compared to those of erythromycin, azithromycin, clarithromycin, roxithromycin, and eight other antimicrobial agent against unusual aerobic and anaerobic human and animal bite pathogens isolated from skin and soft tissue infections in humans. Antimicrob Agents Chemother 42 (5): 1127–1132PubMedGoogle Scholar
  35. 35.
    Goldstein EJC, Citron DM, Vreni Merriam C, Warren Y, Tyrrell K (1999) Activities of Telithromycin (HMR 3647, RU 66647) compared to those of erythromycin, azithromycin, clarithromycin, roxithromycin, and other antimicrobial agents against unusual anaerobes. Antimicrob Agents Chemother 43 (11): 2801–2805PubMedGoogle Scholar
  36. 36.
    Goldstein EJC et al (2000) Comparative In vitro activity of ABT-773 against aerobic and anaerobic human and animal bite pathogens isolated from skin and soft tissue. Abstract 2.31, p. 29. In Abstracts of ICMASKO 5, Wallace Communications, Atlanta GA.Google Scholar
  37. 37.
    Marques T, Piedad J (1997) Susceptibility testing by E-test and agar dilution of 30 strains of Legionella spp. isolated in Portugal. Clin Microb Infect 3(3): 365–368CrossRefGoogle Scholar
  38. 38.
    Schulin T, Wennerstern CB, Ferraro MJ, Moellering RCJ, Eliopoulos GM (1998) Susceptibilities of legionella spp. to newer antimicrobials in vitro. Antimicrob Agents Chemother 42: 1520–1523PubMedGoogle Scholar
  39. 39.
    Bebear CM, Renaudin H, Bryskier A, Bebear C (2000) Comparative activities of telithromycin (HMR 3647), levofloxacin, and other antimicrobial agents against human mycoplasmas. Antimicrob Agents Chemother 44 (7): 1980–1982CrossRefGoogle Scholar
  40. 40.
    Bebear CM, Renaudin H, Aydin MD, Chantot JF, Bebear C (1997) In vitro activity of ketolides against mycoplasmas . J Antimicrob Chemother 39: 669–670PubMedCrossRefGoogle Scholar
  41. 41.
    Rachek LI, Hines A, Tucker AM, Winkler HH, Wood DO (2000) Transformation of Rickettsia prowazekii to erythromycin resistance encoded by the Escherichia coli ereB gene. J Bacteriol 182 (11): 3289–3291PubMedCrossRefGoogle Scholar
  42. 42.
    Rolain JM, Maurin M, Vestris G, Raoult D (1998) In vitro susceptibility of 27 Rickettsiae to 13 antimicrobials. Antimicrob Agents Chemother 42 (7): 1537–1541PubMedGoogle Scholar
  43. 43.
    Rolain JM, Maurin M, Bryskier A, Raoult D (2000) In vitro activities of telithromycin (HMR 3647) against Rickettsia rickettsii, Rickettsia conorii, Rickettsia africae, Rickettsia typhi, Rickettsia prowazekii, Coxiella burnetti, Bartonella henselae, Bartonella quintana, Bartonella bacithformis, and Ehrlichia chaffeensis. Antimicrob Agents Chemother 44 (5): 1391–1393PubMedCrossRefGoogle Scholar
  44. 44.
    Maurin M, Gasquet S, Ducco C, Raoult D (1995) Minimal inhibitory concentrations of 28 antibiotic compounds for 14 Bartonella isolates. Antimicrob Agents Chemother 39 (11): 2387–91PubMedCrossRefGoogle Scholar
  45. 45.
    Maurin M, Raoult D (1993) Antibiotic susceptibility of Rochalimaea quintana Rochalimaea vinsonii and the newly described Rochalimeae henselae. J Antimicrob Chemother 32: 587–94CrossRefGoogle Scholar
  46. 46.
    Stock I, Wiedemann B (1999) An In vitro study of the antimicrobial susceptibilities of Yersinia enterocolitica and the definition of a database. J Antimicrob Chemother 43: 37–45PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Adel Ben Ali
    • 1
  • Fred W. Goldstein
    • 1
  • Jacques F. Acar
    • 1
  1. 1.Laboratoire de Microbiologie MédicaleHôpital Saint JosephParis Cedex 14France

Personalised recommendations