Advertisement

Ketolides: novel antibacterial agents designed to overcome resistance to erythromycin A within gram-positive cocci

  • André Bryskier
  • Alexis Denis
Chapter
Part of the Milestones in Drug Therapy MDT book series (MDT)

Abstract

Erythromycin A [1] was discovered at a time when a new drug active against penicillinase-producing Staphylococcus aureus strains was needed. Penicillinaseproducing resistant strains appeared in London hospitals very shortly after the early clinical use of penicillin G, and they soon spread worldwide [2]. Erythromycin use rapidly was limited by the development of other drugs active on penicillin G-resistant S. aureus isolates and by the fact that it shows only a bacteriostatic activity. In addition, erythromycin’ s pharmacokinetic behaviour is erratic, as the compound is unstable in acidic condition [3].

Keywords

Antibacterial Agent Antimicrob Agent Moraxella Catarrhalis Lancefield Group Bottle Brush 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    McGuire JM, Bunch PL, Anderson RC et al (1982) Ilotycin, a new antibiotic Antibiot Chemother 2: 281–282Google Scholar
  2. 2.
    Bryskier A, Labro MT (1994) Macrolides: nouvelles perspectives therapeutiques La Presse Med. 23: 1762–1766Google Scholar
  3. 3.
    Bryskier A, Agouridas C, Chantot JF (1993) Acid stability of new macrolides J Chemother 5 (Suppl 1): 158–159Google Scholar
  4. 4.
    Blackmon J, Hicklin MD, Chandler JF (1978) Legionnaires’ disease: pathological and historical aspect of a new disease Arch Pathol Lab Med 102: 337–343Google Scholar
  5. 5.
    Kirst HA, Sides GD (1989) New directions for macrolide antibiotics Antimicrob Agents Chemother 33: 1419–1422Google Scholar
  6. 6.
    Chantot JF, Bryskier A, Gasc JC (1986) Antibacterial activity of roxithromycin, a laboratory evaluation J Antibiot 39: 660–668Google Scholar
  7. 7.
    Morimoto S., Takahashi Y, Watanabe Y, Omara S (1984) Chemical modification of erythromycin. Synthesis and antibacterial activity of 6–0-methyl erythromycin A. J Antibiot 37: 187–189PubMedCrossRefGoogle Scholar
  8. 8.
    Bryskier A, Agouridas C (1993) Azalides: a new medicinal chemical family Curr Opin Invest Drugs 2: 687–694Google Scholar
  9. 9.
    Bryskier A, Agouridas C, Chantot JF (1997) Ketolides: new semi-synthetic 14-membered ring macrolides In: SH Zinner, LS Young, JF Acar, HC Neu (eds): Expanding indications for the new macrolides, azalides and streptogramins. Marcel Dekker, New York, 39–50Google Scholar
  10. 10.
    Bryskier A, Agouridas C, Chantot JF (2000) Ketolides: novel antibacterial agents designed to overcome erythromycin A resistance In: SH Zinner, LS Young, JF Acar, C Ortiz-Neu (eds): New consideration for macrolides, azalides, streptogramins and ketolides. Marcel-Dekker, New-York, 79–102Google Scholar
  11. 11.
    Bryskier A (1999) Respiratory fluoroquinolones myth or reality Curr Opin Anti-infect Invest Drugs 1: 413–427Google Scholar
  12. 12.
    Corbaz L, Ettlinger L, Gaumann E, Keller W, Kradolfer F, Kyburz E, Neipp L, Prelog V, Reusser R, Miner H (1955) Stoffwechselprodukte von Actinomyceten. Narbomycin. Hely Chimi Acta 35: 935–942CrossRefGoogle Scholar
  13. 13.
    Broclunann H, Henkel W (1951)Pilcromycin eM bitter schmeckendes Antibioticum aus Actinomyceten. Chem. Ber. 84: 284–288CrossRefGoogle Scholar
  14. 14.
    Allen N (1978) Macrolide resistance in Staphylococcus aureus: inducers of macrolide resistance. Antimicrob. Agents Chemother. 11: 669–674.CrossRefGoogle Scholar
  15. 15.
    LeMahieu R, Carson M, Kierstead RW, Fern LM, Grunberg DE (1974) Glycoside cleavage reactions on erythromycin A. Preparation of erythronolide A. J Med Chem 17: 953–956PubMedCrossRefGoogle Scholar
  16. 16.
    Pestka S, Lemahieu RA (1974) Effect of erythromycin analogues on binding of [14C]erythromycin to Escherichia coli ribosomes. Antimicrob Agents Chemother 6: 479–488PubMedCrossRefGoogle Scholar
  17. 17.
    Pestka S, Lemahieu RA, Miller P (1974) Correlation of effect of Erythromycin analogues on intact bacteria and on [14C]erythromycin binding to Escherichia coli ribosomes. Antimicrob Agents Chemother 6: 489–491.PubMedCrossRefGoogle Scholar
  18. 18.
    Pestka S, LeMahieu R (1974) Inhibition of [14C]chloramphenicol binding to Escherichia coli. ribosomes by erythromycin derivatives. Antimicrob Agents Chemother 6: 39–45.PubMedCrossRefGoogle Scholar
  19. 19.
    Pestka S, Vince R, LeMahieu R, Weiss F, Fern L, Unowsky J (1976) Induction of erythromycin resistance in Staphylococcus aureus by erythromycin derivatives. Antimicrob Agents Chemother 9: 128–130PubMedCrossRefGoogle Scholar
  20. 20.
    Fernandes PB, Baker WR, Freiberg LA, Hardy DJ, McDonald EJ (1989) New macrolides active against streptococcus pyogenes with inducible or constitutive type of macrolide-lincosamidestreptogramin B resistance. Antimicrob Agents Chemother 33: 78–81PubMedCrossRefGoogle Scholar
  21. 21.
    Morimoto S, Misawa Y, Kondoh H, Watanabe Y, Omura S (1990) Synthesis and antibacterial activity of 4“-0-methyl derivatives of erythromycin A 11,12-cyclic carbonate. J Antibiotics 43: 566–569CrossRefGoogle Scholar
  22. 22.
    Bryskier A (2000) Telithromycin, an example of a new class of antibacterial agent Clin Microbial Infect 6: 661–669Google Scholar
  23. 23.
    Denis A, Agouridas C, Auger JM, Benedetti Y, Bonnefoy A, Bretin F, Chantot JF, Dussarat A, Fromentin C, Gouin et al (1999) Synthesis and antibacterial activity of HMR 3647- a new ketolide highly potent against erythromycin-resistant and susceptible pathogens. Bioorg Med Chem Lett 3075–3080Google Scholar
  24. 24.
    Agouridas C, Denis A, Auger JM, Benedetti Y, Bonnefoy A, Bretin F, Chantot JF, Dussarat A, Fromentin C, Gouin D’Ambrieres S et al (1998) Synthesis and antibacterial activity of ketolides (6–0-methyl-3-oxo-erythromycin derivatives). A new class of antibacterials highly potent against macrolide-resistant and susceptible respiratory pathogens. J Med Chem 41: 4080–4100PubMedCrossRefGoogle Scholar
  25. 25.
    Baker WR, Clark JD, Stephens RL, Kim KH (1988) Modifications of macrolide antibiotics. Synthesis of 11-deoxy-11-(carboxyamino)-6–0-methylerythromycin A 11,12-(cyclic esters) via intramolecular Michael reaction of 0-carbamates with an a, I3-unsaturated ketone. J Org Chem 53: 2340–2345CrossRefGoogle Scholar
  26. 26.
    Griesgraber G, Or YS, Chu DTW, Nilius AM, Johnson PM, Flamm RK, Henry RF, Plattner JJ (1996) 3-keto-11,12-carbazate derivatives of 6–0-methylerythromycin A synthesis and in vitro activity. J Antibiotics 49: 465–477CrossRefGoogle Scholar
  27. 27.
    Agouridas C, Chantot JF (1996) New erythromycin derivatives. EP Patent 7160093 AlGoogle Scholar
  28. 28.
    Denis A, Auger JM (2000) Preparation of 6-deoxy-erythromycins as antibiotics. WO Patent 0005239 A IGoogle Scholar
  29. 29.
    Elliott R L, Pireh D, Griesgraber G, Nilius AM, Ewing PJ, Ha Bui M, Raney PM, Flamm RK, Kim K, Henry RF, Chu DTW, Plattner JJ, Sun Or Y (1998) J Med Chem 41: 1651–1659PubMedCrossRefGoogle Scholar
  30. 30.
    Agouridas C, Chantot JF (1997) New erythromycin derivatives. WO Patent 9731929 AlGoogle Scholar
  31. 31.
    Denis A, Bretin F, Fromentin C, Bonnet A, Piltan G, Agouridas C, Bonnefoy A (2000) I3-Ketoester chemistry and ketolides. Synthesis and antibacterial activity of 2-halogeno, 2-methyl and 2,3 enol-ether ketolides. Bioorg Med Chem Lett 2019–2022Google Scholar
  32. 32.
    Kurath P, Jones PH, Egan RS, Perun Ti (1971) Acid degradation of erythromycin A and erythromycin B. Experentia 27: 362CrossRefGoogle Scholar
  33. 33.
    Fiese EP, Steffen SH (1990) Comparison of the acid stability of azithromycin and eythromycin A. J Antimicrob Chemother 25 (suppl A): 39–47PubMedCrossRefGoogle Scholar
  34. 34.
    Puri SK, Lassman HB (1987) Roxithromycin: pharmacokinetic review of a macrolide J Antimicrob Chemother 20 (suppl B): 89–100Google Scholar
  35. 35.
    Schulin T, Wennersten EB, Moellering RC Jr, Eliopoulos GM (1998) In vitro activity of the new ketolide antibiotic HMR 3647 against gram-positive bacteria. J Antimicrob Chemother 42: 297–301PubMedCrossRefGoogle Scholar
  36. 36.
    Reinert RR, Bryskier A, Ltitticken R (1998) In vitro activities of the new ketolides antibiotics HMR 3004 and HMR 3647 against Streptococcus pneumoniae in Germany. Antimicrob Agent Chemother 42: 1509–1511Google Scholar
  37. 37.
    Boswell FI, Andrews JM, Ashby JP, Fogarty NP, Brenwald NP, Wise R (1998) The in vitro activity of HMR 3647, a new ketolide antimicrobial agent J Antimicrob Chemother 42: 703–709Google Scholar
  38. 38.
    Barry AL, Fuchs PC, Brown SD (1998) In vitro activities of the ketolide HMR 3647 against recent gram-positive clinical isolate and Haemophilus influenzae Antimicrob Agent Chemother 42: 2138–2140Google Scholar
  39. 39.
    Pankuch GA, Visalli HA, Jacobs HP, Appelbaum PC (1998) Susceptibilities of penicillin and erythromycin-susceptible and -resistant pneumococci to HMR 3647 (RU 66 647), a new ketolide compared with susceptibilities to 17 other agents. Antimicrob Agent Chemother 42: 462–650Google Scholar
  40. 40.
    Okamoto H, Miyazaki S, Tateda K, Ishii Y, Yamaguchi K (2000) Comparative in vitro activity of telithromycin (HMR 3647), three macrolides, amoxicillin, cefdinir and levofloxacin against gram-positive clinical isolates in Japan. J Antimicrob Chemother 46: 797–802PubMedCrossRefGoogle Scholar
  41. 41.
    Inoue M, Sato Y, Kuga A, Okamoto R (1998) The novel ketolide HMR 3647 shows high activity against gram-positive cocci. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, Abstract E-138Google Scholar
  42. 42.
    Talbot UM, Paton AN, Paton JC (1996) Uptake of Streptococcus pneumoniae by respiratory epithelial cells. Infect Imm 64: 3772–3777Google Scholar
  43. 43.
    Mandell GL, Coleman EJ (2000) Activities of antimicrobial agents against intracellular pneumococci. Antimicrob Agent Chemother 44: 2561–2563CrossRefGoogle Scholar
  44. 44.
    Pankuch GA, Hoellman DB, Lin F, Bajaksouzian S, Jacobs MR, Appelbaum PC (1998) Activity of HMR 3647 compared to those of five agents against Haemophilus influenzae and Moraxella catarrhalis by MIC determination and time kill. Antimicrob Agent Chemother 43: 3032–3034Google Scholar
  45. 45.
    Piper KE, Rouse MS, Steckelberg TM, Wilson WA, Patel R (1999) Ketolide treatment of Haemophilus influenzae experimental pneumonia. Antimicrob Agents Chemother 43: 708–710PubMedGoogle Scholar
  46. 46.
    Hoppe JF, Bryskier A (1998) In vitro susceptibilities of Bordetella pertussis and Bordetella parapertussis to ketolides (HMR 3004 and HMR 3647), four macrolides (azithromycin, clarithromycin, erythromycin A, and roxithromycin), and two ansamycins (rifampicin and rifapentine). Antimicrob Agent Chemother 42: 965–966Google Scholar
  47. 47.
    Bemer-Melchior P, Juvin ME, Tassin S, Bryskier A, Schito GC, Drugeon H (2000) In vitro activity of the new ketolide telithromycin compared with those of macrolides against Streptococcus pyogenes: influence of resistance mechanism and methodological factors. Antimicrob Agent Chemother 44: 2999–3002CrossRefGoogle Scholar
  48. 48.
    Vazifeh D, Bryskier A, Labro MT (2000) Effect of pro-inflammatory cytokines on the interplay between roxithromycin, HMR 3647, HMR 3004 and human polymorphonuclear neutrophils. Antimicrob Agent Chemother 44: 511–521CrossRefGoogle Scholar
  49. 49.
    Vazifeh D, Preira A, Bryskier A, Labro MT (1998) Interactions between HMR 3647, a new ketolide, and human polymorphonuclear neutrophils. Antimicrob Agents Chemother 42: 1944–1951PubMedGoogle Scholar
  50. 50.
    Roblin PM, Hammerschlag MR (1998) In vitro activity of a new ketolide antibiotic, telithromycin against Chlamydia pneumoniae. Antimicrob Agent Chemother 42: 1515–1516Google Scholar
  51. 51.
    Gustafsson I, Hjelm E, Cars 0 (2000) In vitro pharmacodynamics of the new ketolides HMR 3004 and HMR 3647 (telithromycin) against. Chlamydia pneumoniae. Antimicrob Agent Chemother 44: 1846–1849CrossRefGoogle Scholar
  52. 52.
    Edelstein PM, Edelstein MA (1999) In vitro activity of the ketolide HMR 3647 (RU66 647) for Legionella spp. Its pharmacokinetics in guinea pigs and use of the drug to treat guinea pigs with Legionella pneumophila. Antimicrob Agent Chemother 43: 90–95Google Scholar
  53. 53.
    Bebear CM, Renaudin H, Bryskier A, Bebear C (2000) Comparative activities of telithromycin (HMR 3647), levofloxacin, and other antimicrobial agents against human mycoplasmas. Antimicrob Agent Chemother 44: 1980–1982CrossRefGoogle Scholar
  54. 54.
    Rolain JM, Maurin M, Bryskier A, Raoult D (2000) In vitro activities of telithromycin (HMR 3647) against Rickettsia rickettsii, Rickettsia conerii, Rickettsia africae, Rickettsia typhi, Rick-ettsia prouvazekii, Coxiella burnetii, Bartonela henselae, Bartonella quintona, Bartonella bacillifortnis, Ehrhichia chaffeensis. Antimicrob Agent Chemother 44: 1391–1393CrossRefGoogle Scholar
  55. 55.
    Maurin M, Mersali NF, Raoult D (2000) Bactericidal activities of antibiotics against intracellular Franciscella tularensis. Antimicrob Agent Chemother 44: 3428–3431CrossRefGoogle Scholar
  56. 56.
    Hamilton-Miller J, Shah S. (1998) Comparative in vitro activity of ketolide HMR 3647 and four macrolides against gram-positive cocci of known erythromycin susceptibility isolates. J Antimicrob Chemother 41: 649–653PubMedCrossRefGoogle Scholar
  57. 57.
    Bryskier A (2001) Anti anaerobic activity of antibacterial agents. Exp Opin Invest Drugs 10: 239–267CrossRefGoogle Scholar
  58. 58.
    Edlund C, Sillerstrom E, Wahland E, Nord CE (1998) In vitro activity of HMR 3647 against anaerobic bacteria. J Chemother 10: 280–284PubMedGoogle Scholar
  59. 59.
    Goldstein EJC, Citron DM, Merriam CV, Warren Y, Tyrrell K (1999) Activities of telithromycin (HMR 3647, RU 66 647) compared to those of erythromycin, azithromycin, clarithromycin, roxithromycin, and other antimicrobial agents against unusual anaerobes. Antimicrob Agent Chemother 43: 2801–2805Google Scholar
  60. 60.
    Dekerman G, Schaumann R, Pless B, Claros MC, Rodloff AC (2000) In vitro activity of telithromycin (HMR 3647) and seven other antimicrobial agents against anaerobic bacteria. J Antimicrob Chemother 46: 115–119CrossRefGoogle Scholar
  61. 61.
    Zarazaga M, Saenz T, Portillo A, Tenerio C, Ruiz-Larrea F, Del Campo R, Baquero F, Tones C (1999) In vitro activities of ketolide HMR 3647, macrolides and other antibiotics against Lactobacillus, Leuconostoc, and Pediacoccus isolates. Antimicrob Agents Chemother 43: 3039–3041PubMedGoogle Scholar
  62. 62.
    Saez-Nieto JA, Vazquez JA (1999) In vitro activity of ketolides HMR 3647, and HMR 3004 against Neisseria spp and Moraxella catarrhalis. Antimicrob Agent Chemother 49: 983–984Google Scholar
  63. 63.
    Engstrand GL, Cars 0 (2001) In vitro pharmacodynamic studies of activities of ketolides HMR 3647 (telithromycin) and HMR 3004 against extracellular or intracellular Helicobacter pylori. Antimicrob Agents Chemother 45: 353–355PubMedCrossRefGoogle Scholar
  64. 64.
    Munckhof WJ, Borlace G, Tumidge JD (2000) Post antibiotic suppression of growth erythromycin A-susceptible and -resistant gram-positive bacteria by the ketolides telithromycin (HMR 3647) and HMR 3004. Antimicrob Agent Chemother 44: 1749–1753CrossRefGoogle Scholar
  65. 65.
    Hansen LH, Mauvais P, Douthwaite S (1999) The macrolide-ketolide antibiotic binding site is formed by structures in domain II and V of 23S ribosomal RNA. Mol Microbio 31: 623–631CrossRefGoogle Scholar
  66. 66.
    Douthwaite S, Hansen LH, Mauvais P (2000) Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA. Mol Microbiol 36: 183–193PubMedCrossRefGoogle Scholar
  67. 67.
    Champney JW, Tober CL (1998) Inhibition of translation and 50S ribosomal subunit formation in Staphylococcus aureus cells by 11 different ketolides antibiotics. Current Microbiol 37: 418–425PubMedCrossRefGoogle Scholar
  68. 68.
    Khaitovich P, Mankin AS (1999) Effects of antibiotics on large ribosomal subunit apparently reveals possible function of 5S rRNA. J Mol Biol 291: 1025–1038PubMedCrossRefGoogle Scholar
  69. 69.
    Xiong L, Shah S, Mauvais P, Mankin AS (1999) Ketolide resistance mutation in domain II of 23S rRNA reveals proximity of hair pie 35 of the peptidyl transferase centre. Mol Microbio 31: 633–639CrossRefGoogle Scholar
  70. 70.
    Arpin C, Daube N, Tessier F, Quentin C (1999) Incidence of mef A and mef E genes in viridans group streptococci. Antimicrob Agent Chemother 43: 2335–2336Google Scholar
  71. 71.
    Arpin C, Canron MH, Maugein J, Quentin C (1999) Incidence of mef A and mef E genes in Streptococcus agalactiae. Antimicrob Agent Chemother 43: 944–946Google Scholar
  72. 72.
    Weisblum B (1998) Macrolide resistance. Drug Res Update 1: 29–41CrossRefGoogle Scholar
  73. 73.
    Tait-Kamradt A, Davies T, Cronan M, Jacobs MR, Appelbaum PC, Sutcliffe J (2000) Mutations in 23S rRNA and ribosomal protein L4 account for resistance in pneumococci strains selected in vitro by macrolide passage. Antimicrob Agent Chemother 44: 2118–2225CrossRefGoogle Scholar
  74. 74.
    Davies TA, Dewasse BE, Jacobs MR, Appelbaum PC (2000) In vitro development of resistance to telithromycin, four macrolides, clindamycin, and pristinamycin in Streptococcus pneumoniae. Antimicrob Agent Chemother 44: 414–417CrossRefGoogle Scholar
  75. 75.
    Bonnefoy A, Girard AM, Agouridas C, Chantot JF (1998) Ketolides lack inducibility properties of MLSB resistance phenotype. J Antimicrob Chemother 40: 85–90CrossRefGoogle Scholar
  76. 76.
    Edlund C, Alvan G, Barkholt L, Vacheron F, Nord CE (2000) Pharmacokinetics and comparative effects of telithromycin (HMR 3647) and clarithromycin on the oropharyngeal and intestinal microflora. J Antimicrob Chemother 46: 741–749PubMedCrossRefGoogle Scholar
  77. 77.
    Vesga 0, Bonnat C, Craig WA (1998) In vivo pharmacodynamic activity of HMR 3647 a new ketolide In program and abstract of the 38th Intersci. Conf Antimicrob. Agent Chemother. —Toronto — American Soc. Microbiol. Washington DC — F255: 189Google Scholar
  78. 78.
    Namour F, Wessels DH, Pascual MH, Reynolds D, Sultan E, Lenfant B (2001) Pharmacokinetics of the new ketolide telithromycin (HMR 3647) administered in ascending single and multiple doses. Antimicrob Agent Chemother 45: 170–175CrossRefGoogle Scholar
  79. 79.
    Carbon C (2000) Telithromycin, a once-a-day ketolide in the treatment of community-acquired pneumonia. Presse Med 29: 2042–2043PubMedGoogle Scholar
  80. 80.
    Vazifeh D, Abdelghaffar H, Labro MT (1997) Cellular accumulation of the new ketolide RU 64004 by human neutrophils: comparison with that of azithromycin and roxithromycin. Antimicrob Agents Chemother 41: 2099–2107PubMedGoogle Scholar
  81. 81.
    Labro MT, Vazifeh D, Bryskier A (2000) Uptake of two new fluoroketolides, HMR3562 and HMR3787 by human neutrophils (PMN) in vitro compared with telithromycin (HMR3647) Abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, American Society for Microbiology — Washington DC, 1819: 214Google Scholar
  82. 82.
    Felmingham D, Robbins MJ, Mathias IL, Dencer C, Salman H, Ridgway GL, Bryskier A (2000) In vitro activity of the ketolide, HMR3832, against clinical bacterial isolates Abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, American Society for Microbiology — Washington DC, 2172: 183Google Scholar
  83. 83.
    Bonnefoy A, Denis A, Bretin F, Fromentin C, Agouridas C (1999) In vivo antibacterial activity of two ketolides HMR 3562 and HMR 3787 highly active against respiratory pathogens. Abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, American Society for Microbiology — Washington DC, 2156: 351Google Scholar
  84. 84.
    Levasseur P, Vallee E, Bonnefoy A, Garry L, Agouridas C, Bryskier A, Carbon C (1999) Activity of ketolides HMR 3562 and HMR 3787 against erythromycin-sensitive (Ery-S) and -resistant (Ery-Rc) pneumococci in murine pneumonia models Abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, American Society for Microbiology — Washington DC, 2158: 352Google Scholar
  85. 85.
    Drugeon H, Bryskier A, Bemer-Melchior P, Juvin ME (2000) New fluoreketolides-HMR3562 and HMR3787 bactericidal activity against Streptococcus pneumoniae Abstracts of the 40th Inter-science Conference on Antimicrobial Agents and Chemotherapy, Toronto, American Society for Microbiology — Washington DC, 1818: 213Google Scholar
  86. 86.
    Champney WS, Tober CL (2000) Structure-activity relationship for six ketolide antibiotics Abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, American Society for Microbiology — Washington DC, 1820: 214Google Scholar
  87. 87.
    Bryskier A (1999) Novelties in the field of antibacterials. Clin Infect Dis 29: 632–658PubMedCrossRefGoogle Scholar
  88. 88.
    Felmingham D, Robbins MJ, Mathias I, Bryskier A (1999) In vitro activity of two ketolides, HMR 3562 and HMR 3787, against clinical bacterial isolates. Abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, American Society for Microbiology — Washington DC, 2154: 351Google Scholar
  89. 89.
    Champney SW, Tober CL (2001) Structure-activity relationships for six ketolide antibiotics. Curr Microbiol 42: 203–210PubMedGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • André Bryskier
    • 1
  • Alexis Denis
    • 1
  1. 1.Aventis Pharma Research CenterRomainvilleFrance

Personalised recommendations