Advertisement

Novel macrolide derivatives active against resistant pathogens

  • Ly T. Phan
  • Zhenkun Ma
Chapter
  • 489 Downloads
Part of the Milestones in Drug Therapy MDT book series (MDT)

Abstract

Macrolide antibiotics are widely prescribed for the treatment of upper and lower respiratory tract infections. Erythromycin is the first member of this class and has been in clinical used for over four decades. To overcome some of the drawbacks of erythromycin, including acid instability [2], gastro intestinal (GI) irritation [2], and poor pharmacokinetic properties, second-generation macrolides such as clarithromycin [3] and azithromycin [4] were developed. Clarithromycin addresses the acid instability by methylating the 6-hydroxyl group and thus preventing the 6,9-ketal formation, while azithromycin addresses the problem by transforming the 9-ketone into a ring-expanded analog via Beckman rearrangement of the corresponding 9-oxime. Other drugs such as roxithromycin [5] and dirithromycin [6] solve the acid instability by converting the 9-keto group of erythromycin into 9-oxime and 9-amino derivatives respectively.

Keywords

Antibacterial Activity Resistant Pathogen Macrolide Antibiotic 39th Interscience Heck Coupling Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1a.
    Kurath P, Jones P, Egan R, Perun T (1971) Acid degradation of erythromycin A and erythromycin B. Experienta 27: 362.CrossRefGoogle Scholar
  2. 1b.
    Krowicki K, Zamojski A (1974) Chemical modifications of erythromycins I. 8,9-anhydro-6,9-hemiketal of erythromycin A. J Antibiotics 26: 569–574CrossRefGoogle Scholar
  3. 2.
    Itoh Z, Nakaya K, Suzuki H, Arai H, Wakabayashi K (1984) Erythromycin mimics exogenous motilin in gastrointestinal contractile activity in the dog. Am J Physiol 247: G688–G694PubMedGoogle Scholar
  4. 3.
    Morimoto S, Takahashi Y, Wantanabe Y, Omura S (1984) Chemical modification of erythromycins I. Synthesis and antibacterial activity of 6-O-methylerythromycin A. J Antibiotics 37: 187–189CrossRefGoogle Scholar
  5. 4.
    Bright GM, Nagel AA, Bordner J, Desai KA, Dibrino JN, Nowakowska J, Vincent L, Watrous RM, Sciavolino FC, English AR et al (1988) Synthesis in vitro and in vivo activity of novel 9- deoxo-9a-aza-9a-homoerythromycin A derivatives; a new class of macrolides antibiotics. J Antibiotics 41: 1029–1047CrossRefGoogle Scholar
  6. 5a.
    Chantot JF, Bryskier A, Gasc JC (1986) Antibacterial activity of roxithromycin: a laboratory evaluation. J. Antibiotics 39: 660–668CrossRefGoogle Scholar
  7. 5b.
    Gasc JC, Gouin d’Ambrieres S, Lutz A, Chantot JF (1991) New ether oxime of erythromycin A; a structure activity relationship study. J Antibiotics 44: 313–330CrossRefGoogle Scholar
  8. 6.
    Kirst HA, Wind JA, Leeds JP, Willard KE, Debono M, Bonjouklian R, Greene JM, Sullivan KA, Paschal JW, Deeter JB et al (1990) Synthesis and structure-activity relationships of new 9-N-alkyl derivatives of 9(S)-erythromycylamine. J Med Chem 33: 3086–3094PubMedCrossRefGoogle Scholar
  9. 7a.
    Chu DTW (1999) Recent progress in novel macrolides, quinolones, and 2-pyridones to overcome bacterial resistance. Med Res Rev 19(6): 497–520PubMedCrossRefGoogle Scholar
  10. 7b.
    Bryskier A (1999) New research in macrolides and ketolides since 1997. Exp Opin Invest Drugs 8(8): 1171–1194CrossRefGoogle Scholar
  11. 7c.
    Bryskier A (1997) Novelties in the field of macrolides. Exp Opin Invest Drugs 6: 1697–1709CrossRefGoogle Scholar
  12. 7d.
    Chu DTW (1995) Recent developments in 14- and 15-membered macrolides. Exp Opin Invest Drugs 4(2): 65–94Google Scholar
  13. 8a.
    Baker WR, Clark JD, Stephens RL, Kim KH (1988) Modification of macrolide antibiotics. Synthesis of 11-deoxy-11-(carboxyamino)-6–0-methylerythromycin A 11,12-(cyclic ester) via an intramolecular Michael reaction of 0-carbamates with an a,p-unsaturated ketone. J Org Chem 53: 2340–2345CrossRefGoogle Scholar
  14. 8b.
    Fernandes PB, Baker WR, Freiberg LA, Hardy DJ, McDonald ED (1989) New macrolides active against Streptococcus pyogenes with inducible or constitutive type of macrolide-lincosamide-streptogramin B resistance. Antimicrob Agents Chemother 33: 78–81PubMedCrossRefGoogle Scholar
  15. 9.
    Neszmelyi A, Bojanska-Dahlig H (1978) A carbon-13 relaxation studies of erythromycin A cyclic 11, 12-carbonate. J Antibiotics 31: 478Google Scholar
  16. 10.
    Agouridas C, Denis A, Auger JM, Benedetti Y, Bonnefoy A, Bretin F, Chantot JF, Dussarat A, Fromentin C, et al. (1998) Synthesis and antibacterial activity of ketolides (6–0-methy1–3- oxoerythromycin derivatives): A new class of antibacterials highly potent against macrolideresistant and -susceptible respiratory pathogens. J Med Chem 41: 4080–4100PubMedCrossRefGoogle Scholar
  17. 11.
    For earlier works, see: Daniel T. W. Chu, reference 7 d.Google Scholar
  18. 12.
    Elliott RL, Pireh D, Nilius AM, Johnson PM, Flamm RK, Chu DTW, Plattner JJ, Or YS (1997) Novel 3-deoxy-3-descladinosyl-6-O-methyl erythromycin A analogues. Synthesis and in vitro activity. Bioorg & Med Chem Lett 7(5): 641–646CrossRefGoogle Scholar
  19. 13.
    Elliott RL, Pireh D, Griesgraber G, Nilius AM, Ewing PJ, Bui MH, Raney PM, Flamm RK, Kim K, Henry RF, Chu DTW, Plattner JJ, Or YS (1998) Anhydrolide Macrolides. 1. Synthesis and antibacterial activity of 2,3-anhydro-6-O-methyl 11,12-carbamate erythromycin A analogues. J Med Chem 41: 1651PubMedCrossRefGoogle Scholar
  20. 14.
    Griesgraber G, Kramer MJ, Elliott RL, Nilius AM, Ewing PJ, Raney PM, Bui MH, Flamm RK, Chu DTW, Plattner JJ, Or YS (1998) Anhydrolide Macrolides. 2. Synthesis and antibacterial activity of 2,3-anhydro-6-O-methyl 11,12-carbazate erythromycin A analogues. J Med Chem 41:1660PubMedCrossRefGoogle Scholar
  21. 15.
    The C-10 epimers of the carbazate ketolide series were also inactive. Griesgraber G, Or YS, Chu DTW, Nilius AM, Johnson PM, Flamm RK, Henry RF, Plattner JJ (1996) 3-Keto-11,12-cabazate derivatives of 6-O-methylerythromycin A. Synthesis and in-vitro activity. J Antibiotic 49: 465CrossRefGoogle Scholar
  22. 16.
    Asaka T, Kashimura M, Misawa Y, Ono T, Suzuki K, Yoshida H, Yoshida T, Akashi T, Yokoo C, Nagate T, Morimoto S (1995) A New Macrolide Antibiotic, TE-802; Synthesis and Biological Properties. 35th Interscience Conference on Antimicrobial Agents and Chemotherapy, abstract No. F176Google Scholar
  23. 17.
    Phan LT, Or YS, Spina KP, Chen Y, Tufano M, Chu DTW, Nilius AM, Bui MH, Plattner JJ (1997) Tricyclic Ketolides: Mono-substitution on the Imine Ring. Synthesis and in-Vitro Activity. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy, abstract No. F-263Google Scholar
  24. 18.
    Phan LT, Or YS, Spina KP, Chen Y, Tufano M, Chu DTW, Nilius AM, Bui MH, Plattner JJ (1997) Tetracyclic Ketolides: A New Antibacterial Macrolides. Synthesis and in-Vitro Activity. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy, abstract No. F-264Google Scholar
  25. 19.
    Phan LT, Or YS, Chen Y, Chu DTW, Nilius AM, Bui MH, Patti R, Hensey-Rudloff D, Henry RF, Mitten M, Plattner JJ (1998) 2-Substituted Tricyclic Ketolides: New Antibacterial Macrolides. Synthesis and Biological Activity. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, abstract No. F-127Google Scholar
  26. 20.
    Morimoto S, Misawa Y, Adachi T, Nagate T, Watanabe Y, Omura S (1990) Chemical Modification of Erythromycin II. Synthesis and antibacterial activity of 0-alkyl derivative of erythromycin A. J Antibiotics 43: 286–305CrossRefGoogle Scholar
  27. 21.
    Watanabe Y, Morimoto S, Adachi S, Kashimura M, Asaka T (1993) Chemical modification of erythromycins. IX. Selective methylation at the C-6 hydroxyl group of erythromycin A oxime derivatives and preparation of clarithromycin. J Antibiotics 46: 647–660CrossRefGoogle Scholar
  28. 22.
    Clark RF, Ma Z, Wang S, Griesgraber G, Tufano M, Yong H, Li L, Zhang X, Nilius A, Chu DTW, Or YS (2000) Synthesis and antibacterial activity of novel 6–0-substituted erythromycin A derivatives. Bioorg Med Chem Lett 10:815–819PubMedCrossRefGoogle Scholar
  29. 23a.
    Ma Z, Clark RF, Wang S, Nilius AM, Hamm RK, Or YS (1999) Design, synthesis and characterization of ABT-773: A novel ketolide highly active against multidrug resistant Pathogens. 39’h Interscience Conference on Antimicrobial Agents and Chemotherapy, abstract No. 2133Google Scholar
  30. 23b.
    Or YS, Clark RF, Wang S, Chu DTW, Nilius AM, Flamm RK, Mitten M, Ewing P, Ma Z (2000) Design, synthesis and antimicrobial activity of 6–0-substituted ketolides active against resistant respiratory tract pathogens. J Med Chem 43: 1045–1049PubMedCrossRefGoogle Scholar
  31. 24.
    Ma Z, Or YS, Clark RF, Wang S, Brazzale A, Yong H, Tufano M, Nilius AM, Bui MH, Raney P, Flamm RK, Chu DTW, Plattner JJ (1998) Synthesis and antibacterial activity of 6–0-substituted ketolides. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, abstract No. F126Google Scholar
  32. 25.
    Shortridge D, Ramer NC, Beyer J, Ma Z, Or Y, Flamm RK (1999) The in vitro activity of ABT773 against gram-positive and gram-negative pathogens. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, abstract No. 2136Google Scholar
  33. 26a.
    Mitten M, Meulbroek J, Paige L, Alder J, Ewing P, Molison KW, Nilius AM, Flamm RK, Ma Z, Or YS (1999) Efficacies of ABT-773 and HMR-3647 against respiratory pathogens causing acute systemic infections in mice and lung infections in rats. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, abstract No. 2150Google Scholar
  34. 26b.
    Meulbroek J, Mitten M, Molison KW, Ewing P, Alder J, Nilius AM, Flamm RK, Ma Z, Or YS (1999) Efficacies of ABT-773 and azithromycin against experimental rat lung infections caused by Streptococcus pneumoniae. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, abstract No. 2151Google Scholar
  35. 27.
    Hernandez L, Sadrzadeh N, Krill S, Ma Z, Marsh K (1999) Preclinical pharmacokinetic profile of ABT-773 in mouse, rat, monkey and dog. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, abstract No. 2148Google Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Ly T. Phan
    • 1
  • Zhenkun Ma
    • 2
  1. 1.Enanta Pharmaceuticals, IncWatertownUSA
  2. 2.Abbott LaboratoriesAbbott ParkUSA

Personalised recommendations