Polyketide diversity

  • Leonard Katz
Part of the Milestones in Drug Therapy MDT book series (MDT)


Polyketides are natural products made by bacteria, fungi and plants, that have gained widespread use in human medicine (antibacterials, antifungals, anticancers, immunosuppressants), veterinary medicine (anthelmintics), and agriculture (insecticides). The term was coined by Collie in 1907 to describe compounds that were composed of units containing multiple “ketide” (-CH2-CO-) groups which, as building blocks, either could persist in the final structure or be modified during their biosynthesis [1]. The modification of either carbon center of the ketide unit is the basis for the large and structurally diverse array of compounds that are classified as polyketides.


Extender Unit Methyl Side Chain Polyketide Chain Polyketide Synthesis Acyl Carrier Protein Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Collie JN (1907) Derivatives of the multiple ketene group. Proc Chem Soc 23: 230–231Google Scholar
  2. 2.
    Hutchinson CR (1995) Anthracyclines. Biotechnology 28: 331–357PubMedGoogle Scholar
  3. 3.
    Hutchinson CR (1998) Combinatorial biosynthesis for new drug discovery. Curr Opin Microbiol 1: 319–329PubMedCrossRefGoogle Scholar
  4. 4.
    Tsoi CJ, Khosla C (1995) Combinatorial biosynthesis of ‘unnatural’ natural products: the polyketide example. Chem Biol 2: 355–362PubMedCrossRefGoogle Scholar
  5. 5.
    Xue Y, Wilson D, Zhao L, Liu H-w, Sherman DH (1998) Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae. Chem Biol 5: 661–667PubMedCrossRefGoogle Scholar
  6. 6.
    Salah-Bey K, Doumith M, Michel JM, Haydock S, Cortes J, Leadlay PF, Raynal MC (1998) Targeted gene inactivation for the elucidation of deoxysugar biosynthesis in the erythromycin producer Saccharopolyspora erythraea. Mol Gen Genet 257: 542–553PubMedCrossRefGoogle Scholar
  7. 7.
    Schwecke T, Aparicio JF, Molnar I, Konig A, Khaw LE, Haydock SF, Oliynyk M, Caffrey P, Cortes J, Lester JB et al (1995) The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc Natl Acad Sci US A 92: 7839–7843PubMedCrossRefGoogle Scholar
  8. 8.
    Schupp T, Toupet C, Engel N, Goff S (1998) Cloning and sequence analysis of the putative rifamycin polyketide synthase gene cluster from Amycolatopsis mediterranei. FEMS Microbiol Lett 159: 201–207PubMedCrossRefGoogle Scholar
  9. 9.
    August PR, Tang L, Yoon YJ, Ning S, Muller R, Yu TW, Taylor M, Hoffmann D, Kim CG, Zhang X et al (1998) Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem Biol 5: 69–79PubMedCrossRefGoogle Scholar
  10. 10.
    Schupp T, Toupet C, Cluzel B, Neff S, Hill S, Beck JJ, Ligon JM (1995) A Sorangium cellulosum (myxobacterium) gene cluster for the biosynthesis of the macrolide antibiotic soraphen A: cloning, characterization, and homology to polyketide synthase genes from actinomycetes. J Bacteriol 177: 3673–3679PubMedGoogle Scholar
  11. 11.
    Haydock SF, Aparicio JF, Molnar I, Schwecke T, Khaw LE, Konig AF, Marsden AF, Galloway IS, Staunton J, Leadlay PF (1995) Divergent sequence motifs correlated with the substrate specificity of (methyl)malonyl-CoA: acyl carrier protein transacylase domains in modular polyketide synthases. FEBS Lett. 374: 246–248PubMedCrossRefGoogle Scholar
  12. 12.
    Bisang C, Long PF, Cortes J, Westcott J, Crosby J, Matharu AL, Cox RJ, Simpson TJ, Staunton J, Leadlay PF (1999) A chain initiation factor common to both modular and aromatic polyketide synthases. Nature 401: 502–505PubMedCrossRefGoogle Scholar
  13. 13.
    Witkowski A, Joshik AK, Lindqvist Y, Smith S (1999) Conversion of a P-ketoacyl synthase to a malonyl decarboxylase by replacement of the active-site cysteine with glutamine. Biochemistry 38: 11643–11650PubMedCrossRefGoogle Scholar
  14. 14.
    Donadio S, Stayer MJ, McAlpine JB, Swanson SJ, Katz L (1991) Modular organization of genes required for complex polyketide biosynthesis. Science 252: 675–679PubMedCrossRefGoogle Scholar
  15. 15.
    Kao CM, Pieper R, Cane DE, Khosla C (1996) Evidence for two catalytically independent clusters of active sites in a functional modular polyketide synthase. Biochemistry 35: 12363–12368PubMedCrossRefGoogle Scholar
  16. 16.
    Staunton J Caffrey P, Aparicio JF, Roberts GA, Bethell SS, Leadlay PF (1996) Evidence for a double-helical structure for modular polyketide synthases. Nature Struct Biol 3: 188–192PubMedCrossRefGoogle Scholar
  17. 17.
    Aparicio JF, Caffrey P, Marsden AF, Staunton J, Leadlay PF (1994) Limited proteolysis and active-site studies of the first multienzyme component of the erythromycin-producing polyketide synthase. J Biol Chem 269: 8524–8528PubMedGoogle Scholar
  18. 18.
    Pieper R, Luo G, Cane DE, Khosla C (1995) Remarkably broad substrate specificity of a modular polyketide synthase in a cell-free system. J Am Chem Soc 117: 11373–11374CrossRefGoogle Scholar
  19. 19.
    Wiesmann KE, Cortes J, Brown MJ, Cutter AL, Staunton J, Leadlay PF (1995) Polyketide synthesis in vitro on a modular polyketide synthase. Chem Biol 2: 583–589PubMedCrossRefGoogle Scholar
  20. 20.
    Kao CM, McPherson M, McDaniel R, Fu H, Cane D, Khosla C (1998) Alcohol stereochemistry in polyketide backbones is controlled by the B-ketoreductase domains of modular polyketide synthases. J Am Chem Soc 120: 2478–2479CrossRefGoogle Scholar
  21. 21.
    Holzbaur IE, Harris RC, Bycroft M, Cortes J, Bisang C, Staunton J, Rudd BA, Leadlay PF (1999) Molecular basis of Celmer’s rules: the role of two ketoreductase domains in the control of chirality by the erythromycin modular polyketide synthase. Chem Biol 6: 189–195PubMedCrossRefGoogle Scholar
  22. 22.
    Weissman KJ, Timoney M, Bycroft M, Grice P, Hanefeld U, Staunton J, Leadlay PF (1997) The molecular basis of Celmer’s rules: the stereochemistry of the condensation step in chain extension on the erythromycin polyketide synthase. Biochemistry 36: 13849–13855PubMedCrossRefGoogle Scholar
  23. 23.
    DeHoff BS, Sutton KL, Rosteck Jr. PR. (Eli Lilly & Co., 1997).Google Scholar
  24. 24.
    Kakavas SJ, Katz L, Stassi D (1997) Identification and characterization of the niddamycin polyketide synthase genes from Streptomyces caelestis. J Bacteriol 179: 7515–7522Google Scholar
  25. 25.
    Kao CM, Luo G, Katz L, Cane DE, Khosla C (1994) Engineered biosynthesis of a triketide lactone from an incomplete modular polyketide synthase. J Am Chem Soc 116: 11612–11613CrossRefGoogle Scholar
  26. 26.
    Cortes J, Wiesmann KE, Roberts GA, Brown MJ, Staunton J, Leadlay PF (1995) Repositioning of a domain in a modular polyketide synthase to promote specific chain cleavage. Science 268: 1487–1489PubMedCrossRefGoogle Scholar
  27. 27.
    Rowe CJ, Cortes J, Gaisser S, Staunton J, Leadlay PF (1998) Construction of new vectors for high-level expression in actinomycetes. Gene 216: 215–223PubMedCrossRefGoogle Scholar
  28. 28.
    McDaniel R, Thamchaipenet A, Gustafsson C, Fu H, Betlach M, Ashley G (1999) Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel “unnatural” natural products. Proc Natl Acad Sci USA 96: 1846–1851PubMedCrossRefGoogle Scholar
  29. 29.
    Kuhstoss S, Huber M, Turner JR, Paschal JW, Rao RN (1996) Production of a novel polyketide through the construction of a hybrid polyketide synthase. Gene 183: 231–236PubMedCrossRefGoogle Scholar
  30. 30.
    Xue Q, Ashley G, Hutchinson CR, Santi DV (1999) A multiplasmid approach to preparing large libraries of polyketides. Proc Nall Acad Sci USA 96: 11740–11745CrossRefGoogle Scholar
  31. 31.
    Mazodier P, Thompson C, Boccard F (1990) The chromosomal integration site of the Streptomyces element pSAM2 overlaps a putative tRNA gene conserved among actinomycetes. Mol Gen Genet 222: 431–434PubMedCrossRefGoogle Scholar
  32. 32.
    Bierman M, Logan R, O’Brien K, Seno ET, Nagaraja R, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: 43–49PubMedCrossRefGoogle Scholar
  33. 33.
    Xue Y, Zhao L, Liu HW, Sherman DH (1998) A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity. Proc Natl Acad Sci USA 95: 12111–12116PubMedCrossRefGoogle Scholar
  34. 34.
    Shah S, Xue Q, Tang L, Carney JR, Betlach M, McDaniel R (2000) Cloning, characterization and heterologous expression of a PK gene cluster involved in the biosynthesis of the antibiotic, oleandomycin. J Antibiot 53: 502–508PubMedCrossRefGoogle Scholar
  35. 35.
    Xue Y, Sherman DH (2000) Alternative modular polyketide synthase expression controls macrolactone structure. Nature 403: 571–575PubMedCrossRefGoogle Scholar
  36. 36.
    Tang L, Fu H, McDaniel R (2000) Formation of functional heterologous complexes using subunits from the picromycin, erythromycin and oleandomycin polyketide synthases. Chem Biol 7: 77–84PubMedCrossRefGoogle Scholar
  37. 37.
    Jacobsen JR, Hutchinson CR, Cane DE, Khosla C (1997) Precursor-directed biosynthesis of erythromycin analogs by an engineered polyketide synthase. Science 277: 367–369PubMedCrossRefGoogle Scholar
  38. 38.
    Weissman KJ, Bycroft M, Cutter AL, Hanefeld U, Frost EJ, Timoney MC, Harris R, Handa S, Roddis M, Staunton J et al (1998) Evaluating precursor-directed biosynthesis towards novel erythromycins through in vitro studies on a bimodular polyketide synthase. Chem Biol 5: 743–754PubMedCrossRefGoogle Scholar
  39. 39.
    Jacobsen JR, Keatinge-Clay AT, Cane DE, Khosla C (1998) Precursor-directed biosynthesis of 12-ethyl erythromycin. Bioorg Med Chem 6: 1171–1177PubMedCrossRefGoogle Scholar
  40. 40.
    Jacobsen JR, Cane DE, Khosla C (1998) Dissecting the evolutionary relationship between 14-membered and 16-membered macrolides. J Am Chem Soc 120: 9096–9097CrossRefGoogle Scholar
  41. 41.
    Donadio S, Stayer MJ, McAlpine JB, Swanson SJ, Katz L (1992) Biosynthesis of the erythromycin macrolactone and a rational approach for producing hybrid macrolides. Gene 115: 97–103PubMedCrossRefGoogle Scholar
  42. 42.
    Donadio S, McAlpine JB, Sheldon PJ, Jackson M, Katz L (1993) An erythromycin analog produced by reprogramming of polyketide synthesis. Proc Natl Acad Sci USA 90: 7119–7123PubMedCrossRefGoogle Scholar
  43. 43.
    Ruan X, Pereda A, Stassi DL, Zeidner D, Summers RG, Jackson M, Shivakumar A, Kakavas S, Stayer MJ, Donadio S et al (1997) Acyltransferase domain substitutions in erythromycin polyketide synthase yield novel erythromycin derivatives. J Bacteriol 179: 6416–6425PubMedGoogle Scholar
  44. 44.
    Stassi D, Post D, Satter M, Jackson M, Maine G (1998) A genetically engineered strain of Saccharopolyspora erythraea that produces 6,12-dideoxyerythromycin A as the major fermentation product. Appl Microbiol Biotechnol 49: 725–731PubMedCrossRefGoogle Scholar
  45. 45.
    Marsden AF, Wilkinson B, Cortes J, Dunster NJ, Staunton J, Leadlay PF (1998) Engineering broader specificity into an antibiotic-producing polyketide synthase. Science 279: 199–202PubMedCrossRefGoogle Scholar
  46. 46.
    Kao CM, Luo G, Katz L, Cane DE, Khosla C (1996) Engineered biosynthesis of structurally diverse tetraketides by a trimodular polyketide synthase. J Am Chem Soc 118: 9184–9185CrossRefGoogle Scholar
  47. 47.
    Kao CM, Luo G, Katz L, Cane DE, Khosla C (1995) Manipulation of macrolide ring size by directed mutagenesis of a modular polyketide synthase. J Am Chem Soc 117: 9105–9106CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Leonard Katz
    • 1
  1. 1.Kosan Biosciences Inc.HaywardUSA

Personalised recommendations