Dual Discrete Canonical Systems and Dual Orthogonal Polynomials

  • L. Sakhnovich
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 134)


The string equation
$$\frac{{d^2 \phi \left( {x,\lambda } \right)}}{{dx^2 }} = \lambda \rho ^2 \left( x \right)\phi \left( {x,\lambda } \right),\rho \left( x \right) > 0,0 \leqslant x \leqslant l$$
can be written in the form
$$\frac{{d^2 \phi \left( {x,\lambda } \right)}}{{dx^2 }} = \lambda \frac{{dM}}{{dx}}\phi \left( {x,\lambda } \right),$$
$$M\left( x \right) = \int\limits_0^x {\rho ^2 \left( t \right)dt.} $$
The equation
$$\frac{{d^2 \tilde \phi \left( {M,\lambda } \right)}}{{dM^2 }} = \lambda \frac{{dx}}{{dM}}\tilde \phi \left( {M,\lambda } \right)$$
is said to be dual to equation (0.1). The notion of a dual string was investigated by I.S. Kac and M.G. Krein [1]. Kac and Krein obtained the dual string equation from the original by interchanging the variables x and M(x). Let us add conditions
$$\phi \left( {0,\lambda } \right) = 1,\phi '\left( {0,\lambda } \right) = 0,$$
$$\tilde \phi \left( {0,\lambda } \right) = 0,\tilde \phi '\left( {0,\lambda } \right) = 1$$
to equations (0.1) and (0.2).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kac I.S., Krein M.G.On the spectral function of the stringAmer. Math. Soc. Translation 103 (1974), 19–102.zbMATHGoogle Scholar
  2. 2.
    Dym H., Sakhnovich L.A.On dual canonical systems and dual matrix string equationto appear.Google Scholar
  3. 3.
    Sakhnovich L.A., Interpolation Theory and its applications, Kluwer, Dordrecht, 1997.zbMATHCrossRefGoogle Scholar
  4. 4.
    Bolotnikov V., Sakhnovich L.A.On an operator approach to interpolation problems for Stieltjes functions, Integral Equations and Operator Theory, v. 35, No. 4 (1999), 423–470.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Berezanskii Yu.M. Expansion in Eigenfunctions of Self-adjoint Operators, Amer. Math. Soc., Providence, 1968.Google Scholar
  6. 6.
    Szegö G., Orthogonal polynomials, NY, 1959.Google Scholar
  7. 7.
    Bateman H., Erdelyi A., Higher transcendental functions, Vol. 2, 1953.Google Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • L. Sakhnovich
    • 1
  1. 1.BrooklynUSA

Personalised recommendations