Advertisement

Some Matrix Inequalities in Multiport Network Connections

  • Tsuyoshi Ando
  • Fumio Kubo
Chapter
  • 146 Downloads
Part of the Operator Theory: Advances and Applications book series (OT, volume 40)

Abstract

Connections of resistive multiport electrical networks give rise to several questions concerning comparisons among certain functions of impedance matrices of branch networks. In the present paper, some matrix inequalities, related to symmetric function means of an n-tuple of positive definite matrices, are proved to answer a part of the conjectures of Anderson, Morley and Trapp.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. N. Anderson, Jr. and R. J. Duffin, Series and parallel addition of matrices, J. Math. Anal. Appl., 26 (1969), 576–594.CrossRefGoogle Scholar
  2. 2.
    W. N. Anderson, Jr., T. D. Morley and G. E. Trapp Symmetric function means of positive operators, Linear Alg. Appl., 60 (1984), 129–143.CrossRefGoogle Scholar
  3. 3.
    W. N. Anderson, Jr. and G. E. Trapp, Shorted operators II, SIAM J. Appl. Math., 28 (1975), 61–71.Google Scholar
  4. 4.
    T. Ando, An inequality between symmetric function means of positive operators, Acta Sci. Math., 45 (1983) 19–22.Google Scholar
  5. 5.
    H. Flanders, An extremal problem in the space of positive definite matrices, Linear Multilinear Alg., 3 (1975), 33–39.CrossRefGoogle Scholar
  6. 6.
    M. Marcus and L. Lopes, Inequalities for symmetric functions and Hermitian matrices, Canad. J. Math., 9 (1957), 305–312.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 1989

Authors and Affiliations

  • Tsuyoshi Ando
    • 1
  • Fumio Kubo
    • 2
  1. 1.Division of Applied Mathematics, Research Institute of Applied ElectricityHokkaido UniversitySapporo 060Japan
  2. 2.Department of Mathematics Faculty of ScienceToyama UniversityToyama 930Japan

Personalised recommendations