Advertisement

Advances in imaging low-grade gliomas

  • Stephen J. Price
Chapter
Part of the Advances and Technical Standards in Neurosurgery book series (NEUROSURGERY, volume 35)

Abstract

Imaging plays a key role in the management of low-grade gliomas. The traditional view of these tumours as non-enhancing areas of increased signal on T2-weighted imaging is now accepted as being incorrect. Using new MR and PET techniques that can probe the pathological changes with in these tumours by assessing vascularity (perfusion MR), cellularity and infiltration (diffusion weighted and diffusion tensor MR), metabolism (MR spectroscopy and FDG PET) and proliferation (MR spectroscopy, methionine PET and 18Ffluorothymidine FLT PET). These tools will allow improvements in tumour grading, biopsy/therapy guidance and earlier assessment of the response to therapy.

Keywords

Magnetic resonance imaging positron emission tomography prognostic factors perfusion imaging diffusion imaging MR spectroscopy biopsy guidance response to therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al Okaili RN, Krejza J, Woo JH, Wolf RL, O’Rourke DM, Judy KD, et al. (2007) Intraaxial brain masses: MR imaging-based diagnostic strategy — initial experience. Radiology 243(2): 539–50PubMedGoogle Scholar
  2. 2.
    Alavi JB, Alavi A, Chawluk J, Kushner M, Powe J, Hickey W, et al. (1988) Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 62(6): 1074–78PubMedGoogle Scholar
  3. 3.
    Alimenti A, Delavelle J, Lazeyras F, Yilmaz H, Dietrich PY, de TN, et al. (2007) Monovoxel 1H magnetic resonance spectroscopy in the progression of gliomas. Eur Neurol 58(4): 198–209PubMedGoogle Scholar
  4. 4.
    Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weisskoff RM, et al. (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191(1): 41–51PubMedGoogle Scholar
  5. 5.
    Aronen HJ, Pardo FS, Kennedy DN, Belliveau JW, Packard SD, Hsu DW, et al. (2000) High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin Cancer Res 6(6): 2189–200PubMedGoogle Scholar
  6. 6.
    Astrakas LG, Zurakowski D, Tzika AA, Zarifi MK, Anthony DC, De GU, et al. (2004) Noninvasive magnetic resonance spectroscopic imaging biomarkers to predict the clinical grade of pediatric brain tumors. Clin Cancer Res 10(24): 8220–28PubMedGoogle Scholar
  7. 7.
    Beppu T, Inoue T, Shibata Y, Kurose A, Arai H, Ogasawara K, et al. (2003) Measurement of fractional anisotropy using diffusion tensor MRI in supratentorial astrocytic tumours. J Neurooncol 63: 109–16PubMedGoogle Scholar
  8. 8.
    Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34(4): 555–66PubMedGoogle Scholar
  9. 9.
    Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. Am J Neuroradiol 27(4): 859–67PubMedGoogle Scholar
  10. 10.
    Bruehlmeier M, Roelcke U, Schubiger PA, Ametamey SM (2004) Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15H20. J Nucl Med 45(11): 1851–59PubMedGoogle Scholar
  11. 11.
    Bruehlmeier M, Roelcke U, Schubiger PA, Ametamey SM (2004) Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15H20. J Nucl Med 45(11): 1851–59PubMedGoogle Scholar
  12. 12.
    Bulakbasi N, Kocaoglu M, Ors F, Tayfun C, Ucoz T (2003) Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors. Am J Neuroradiol 24(2): 225–33PubMedGoogle Scholar
  13. 13.
    Butteriss DJ, Ismail A, Ellison DW, Birchall D (2003) Use of serial proton magnetic resonance spectroscopy to differentiate low-grade glioma from tumefactive plaque in a patient with multiple sclerosis. Br J Radiol 76(909): 662–65PubMedGoogle Scholar
  14. 14.
    Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR, et al. (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90(19): 1473–79PubMedGoogle Scholar
  15. 15.
    Callot V, Galanaud D, Figarella-Branger D, Lefur Y, Metellus P, Nicoli F, et al. (2007) Correlations between MR and endothelial hyperplasia in low-grade gliomas. J Magn Reson Imaging 26(1): 52–60PubMedGoogle Scholar
  16. 16.
    Cha S, Tihan T, Crawford F, Fischbein NJ, Chang S, Bollen A, et al. (2005) Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas by using quantitative blood-volume measurements derived from dynamic susceptibility contrast-enhanced MR imaging. Am J Neuroradiol 26(2): 266–73PubMedGoogle Scholar
  17. 17.
    Chamberlain MC, Murovic JA, Levin VA (1988) Absence of contrast enhancement on CT brain scans of patients with supratentorial malignant gliomas. Neurology 38(9): 1371–74PubMedGoogle Scholar
  18. 18.
    Chan YL, Leung SF, King AD, Choi PH, Metreweli C (1999) Late radiation injury to the temporal lobes: morphologic evaluation at MR imaging. Radiology 213(3): 800–07PubMedGoogle Scholar
  19. 19.
    Chan YL, Yeung DK, Leung SF, Cao G (1999) Proton magnetic resonance spectroscopy of late delayed radiation-induced injury of the brain. J Magn Reson Imaging 10(2): 130–37PubMedGoogle Scholar
  20. 20.
    Chao ST, Suh JH, Raja S, Lee SY, Barnett G (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96(3): 191–97PubMedGoogle Scholar
  21. 21.
    Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, et al. (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46(6): 945–52PubMedGoogle Scholar
  22. 22.
    Choi SJ, Kim JS, Kim JH, Oh SJ, Lee JG, Kim CJ, et al. (2005) [18F]3-deoxy-3-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging 32(6): 653–59PubMedGoogle Scholar
  23. 23.
    Chung JK, Kim YK, Kim SK, Lee YJ, Paek S, Yeo JS, et al. (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo-or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29(2): 176–82PubMedGoogle Scholar
  24. 24.
    Danchaivijitr N, Waldman AD, Tozer DJ, Benton CE, Brasil CG, Tofts PS, et al. (2008) Lowgrade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? Radiology 247(1): 170–78PubMedGoogle Scholar
  25. 25.
    Daumas-Duport C, Tucker ML, Kolles H, Cervera P, Beuvon F, Varlet P, et al. (1997) Oligodendrogliomas. Part II: A new grading system based on morphological and imaging criteria. J Neurooncol 34(1): 61–78PubMedGoogle Scholar
  26. 26.
    De Witte O, Goldberg I, Wikler D, Rorive S, Damhaut P, Monclus M, et al. (2001) Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 95(5): 746–50PubMedGoogle Scholar
  27. 27.
    De Witte O, Levivier M, Violon P, Salmon I, Damhaut P, Wikler D Jr, et al. (1996) Prognostic value positron emission tomography with [18F] fluoro-2-deoxy-D-glucose in the low-grade glioma. Neurosurgery 39(3): 470–76PubMedGoogle Scholar
  28. 28.
    Dean BL, Drayer BP, Bird CR, Flom RA, Hodak JA, Coons SW, et al. (1990) Gliomas: classification with MR imaging. Radiology 174(2): 411–15PubMedGoogle Scholar
  29. 29.
    Delbeke D, Meyerowitz C, Lapidus RL, Maciunas RJ, Jennings MT, Moots PL, et al. (1995) Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 195(1): 47–52PubMedGoogle Scholar
  30. 30.
    Derlon JM, Chapon F, Noel MH, Khouri S, Benali K, Petit-Taboue MC, et al. (2000) Noninvasive grading of oligodendrogliomas: correlation between in vivo metabolic pattern and histopathology. Eur J Nucl Med 27(7): 778–87PubMedGoogle Scholar
  31. 31.
    Derlon JM, Petit-Taboue MC, Chapon F, Beaudouin V, Noel MH, Creveuil C, et al. (1997) The in vivo metabolic pattern of low-grade brain gliomas: a positron emission tomographic study using 18F-fluorodeoxyglucose and 11C-L-methylmethionine. Neurosurgery 40(2): 276–87PubMedGoogle Scholar
  32. 32.
    Di Chiro G, Oldfield E, Wright DC, De Michele D, Katz DA, Patronas NJ, et al. (1988) Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. Am J Roentgenol 150(1): 189–97Google Scholar
  33. 33.
    Donahue KM, Krouwer HG, Rand SD, Pathak AP, Marszalkowski CS, Censky SC, et al. (2000) Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med 43(6): 845–53PubMedGoogle Scholar
  34. 34.
    Donahue KM, Krouwer HG, Rand SD, Pathak AP, Marszalkowski CS, Censky SC, et al. (2000) Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med 43(6): 845–53PubMedGoogle Scholar
  35. 35.
    Eary JF, Mankoff DA, Spence AM, Berger MS, Olshen A, Link JM, et al. (1999) 2-[C-11]thymidine imaging of malignant brain tumors. Cancer Res 59(3): 615–21 PubMedGoogle Scholar
  36. 36.
    Emblem KE, Nedregaard B, Nome T, Due-Tonnessen P, Hald JK, Scheie D, et al. (2008) Glioma grading by using histogram analysis of blood volume heterogeneity from MR-derived cerebral blood volume maps. Radiology 247(3): 808–17PubMedGoogle Scholar
  37. 37.
    Fayed N, Modrego PJ (2005) The contribution of magnetic resonance spectroscopy and echoplanar perfusion-weighted MRI in the initial assessment of brain tumours. J Neurooncol 72(3): 261–65PubMedGoogle Scholar
  38. 38.
    Floeth FW, Pauleit D, Sabel M, Stoffels G, Reifenberger G, Riemenschneider MJ, et al. (2007) Prognostic value of O-(2-18F-Fluoroethyl)-L-Tyrosine PET and MRI in low-grade glioma. J Nucl Med 48(4): 519–27PubMedGoogle Scholar
  39. 39.
    Fox IH, Kelley WN (1978) The role of adenosine and 2′-deoxyadenosine in mammalian cells. Annu Rev Biochem 47: 655–86PubMedGoogle Scholar
  40. 40.
    Gauvain KM, McKinstry RC, Mukherjee P, Perry A, Neil JJ, Kaufman BA, et al. (2001) Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. Am J Roentgenol 177(2): 449–54Google Scholar
  41. 41.
    Giammarile F, Cinotti LE, Jouvet A, Ramackers JM, Saint PG, Thiesse P, et al. (2004) High and low grade oligodendrogliomas (ODG): correlation of amino-acid and glucose uptakes using PET and histological classifications. J Neurooncol 68(3): 263–74PubMedGoogle Scholar
  42. 42.
    Go KG, Keuter EJ, Kamman RL, Pruim J, Metzemaekers JD, Staal MJ, et al. (1994) Contribution of magnetic resonance spectroscopic imaging and L-[1-11C]tyrosine positron emission tomography to localization of cerebral gliomas for biopsy. Neurosurgery 34(6): 994–1002PubMedGoogle Scholar
  43. 43.
    Goebell E, Paustenbach S, Vaeterlein O, Ding XQ, Heese O, Fiehler J, et al. (2006) Lowgrade and anaplastic gliomas: differences in architecture evaluated with diffusion-tensor MR imaging. Radiology 239(1): 217–22PubMedGoogle Scholar
  44. 44.
    Goldman S, Levivier M, Pirotte B, Brucher JM, Wikler D, Damhaut P, et al. (1996) Regional glucose metabolism and histopathology of gliomas: a study based on positron emission tomography-guided biopsy. Cancer 78: 1098–1106PubMedGoogle Scholar
  45. 45.
    Grierson JR, Schwartz JL, Muzi M, Jordan R, Krohn KA (2004) Metabolism of 30-deoxy-30-[F-18] fluorothymidine in proliferating A549 cells: validations for positron emission tomography. Nucl Med Biol 31(7): 829–37PubMedGoogle Scholar
  46. 46.
    Guillevin R, Menuel C, Duffau H, Kujas M, Capelle L, Aubert A, et al. (2008) Proton magnetic resonance spectroscopy predicts proliferative activity in diffuse low-grade gliomas. J Neurooncol 87(2): 181–87PubMedGoogle Scholar
  47. 47.
    Hara T, Kondo T, Hara T, Kosaka N (2003) Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J Neurosurg 99(3): 474–79PubMedGoogle Scholar
  48. 48.
    Hein PA, Eskey CJ, Dunn JF, Hug EB (2004) Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: Tumor recurrence versus radiation injury. Am J Neuroradiol 25(2): 201–09PubMedGoogle Scholar
  49. 49.
    Heiss WD, Heindel W, Herholz K, Rudolf J, Bunke J, Jeske J, et al. (1990) Positron emission tomography of fluorine-18-deoxyglucose and image-guided phosphorus-31 magnetic resonance spectroscopy in brain tumors. J Nucl Med 31(3): 302–10PubMedGoogle Scholar
  50. 50.
    Herholz K, Holzer T, Bauer B, Schroder R, Voges J, Ernestus RI, et al. (1998) 11Cmethionine PET for differential diagnosis of low-grade gliomas. Neurology 50(5): 1316–22PubMedGoogle Scholar
  51. 51.
    Herminghaus S, Dierks T, Pilatus U, Moller-Hartmann W, Wittsack J, Marquardt G, et al. (2003) Determination of histopathological tumor grade in neuroepithelial brain tumors by using spectral pattern analysis of in vivo spectroscopic data. J Neurosurg 98(1): 74–81PubMedGoogle Scholar
  52. 52.
    Inoue T, Ogasawara K, Beppu T, Ogawa A, Kabasawa H (2005) Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol Neurosurg 107(3): 174–80PubMedGoogle Scholar
  53. 53.
    Isselbacher KJ (1972) Sugar and amino acid transport by cells in culture — differences between normal and malignant cells. N Engl J Med 286(17): 929–33PubMedGoogle Scholar
  54. 54.
    Jacobs AH, Thomas A, Kracht LW, Li H, Dittmar C, Garlip G, et al. (2005) 18F-Fluoro-L-Thymidine and 11C-Methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 46(12): 1948–58PubMedGoogle Scholar
  55. 55.
    Jenkinson MD, du Plessis DG, Smith TS, Joyce KA, Warnke PC, Walker C (2006) Histological growth patterns and genotype in oligodendroglial tumours: correlation with MRI features. Brain 129(Pt 7): 1884–91PubMedGoogle Scholar
  56. 56.
    Jenkinson MD, Smith TS, Brodbelt AR, Joyce KA, Warnke PC, Walker C (2007) Apparent diffusion coefficients in oligodendroglial tumors characterized by genotype. J Magn Reson Imaging 26(6): 1405–12PubMedGoogle Scholar
  57. 57.
    Jenkinson MD, Smith TS, Joyce K, Fildes D, du Plessis DG, Warnke PC, et al. (2005) MRS of oligodendroglial tumors: correlation with histopathology and genetic subtypes. Neurology 64(12): 2085–89PubMedGoogle Scholar
  58. 58.
    Jenkinson MD, Smith TS, Joyce KA, Fildes D, Broome J, du Plessis DG, et al. (2006) Cerebral blood volume, genotype and chemosensitivity in oligodendroglial tumours. Neuroradiology 48(10): 703–13PubMedGoogle Scholar
  59. 59.
    Kim S, Chung JK, Im SH, Jeong JM, Lee DS, Kim DG, et al. (2005) 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32(1): 52–59PubMedGoogle Scholar
  60. 60.
    Kim S, Chung JK, Im SH, Jeong JM, Lee DS, Kim DG, et al. (2005) 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32(1): 52–59PubMedGoogle Scholar
  61. 61.
    Kleihues P, Cavenee WK (2000) Pathology and genetics of tumours of the nervous system. IARC Press, Lyon, FranceGoogle Scholar
  62. 62.
    Knopp EA, Cha S, Johnson G, Mazumdar A, Golfinos JG, Zagzag D, et al. (1999) Glial neoplasms: dynamic contrast-enhanced T2 *-weighted MR imaging. Radiology 211(3): 791–98PubMedGoogle Scholar
  63. 63.
    Kondziolka D, Lunsford LD, Martinez AJ (1993) Unreliability of contemporary neurodiagnostic imaging in evaluating suspected adult supratentorial (low-grade) astrocytoma. J Neurosurg 79(4): 533–36PubMedGoogle Scholar
  64. 64.
    Kong XB, Zhu QY, Vidal PM, Watanabe KA, Polsky B, Armstrong D, et al. (1992) Comparisons of anti-human immunodeficiency virus activities, cellular transport, and plasma and intracellular pharmacokinetics of 3′-fluoro-3′-deoxythymidine and 3′-azido-3′-deoxythymidine. Antimicrob Agents Chemother 36(4): 808–18PubMedGoogle Scholar
  65. 65.
    Kono K, Inoue Y, Nakayama K, Shakudo M, Morino M, Ohata K, et al. (2001) The role of diffusion-weighted imaging in patients with brain tumors. Am J Neuroradiol 22(6): 1081–88PubMedGoogle Scholar
  66. 66.
    Kuwert T, Probst-Cousin S, Woesler B, Morgenroth C, Lerch H, Matheja P, et al. (1997) Iodine-123-alpha-methyl tyrosine in gliomas: correlation with cellular density and proliferative activity. J Nucl Med 38(10): 1551–55PubMedGoogle Scholar
  67. 67.
    Lam WW, Poon WS, Metreweli C (2002) Diffusion MR imaging in glioma: does it have any role in the pre-operation determination of grading of glioma? Clin Radiol 57(3): 219–25PubMedGoogle Scholar
  68. 68.
    Law M, Brodsky JE, Babb J, Rosenblum M, Miller DC, Zagzag D, et al. (2007) High cerebral blood volume in human gliomas predicts deletion of chromosome 1p: preliminary results of molecular studies in gliomas with elevated perfusion. J Magn Reson Imaging 25(6): 1113–19PubMedGoogle Scholar
  69. 69.
    Law M, Oh S, Johnson G, Babb JS, Zagzag D, Golfinos J, et al. (2006) Perfusion magnetic resonance imaging predicts patient outcome as an adjunct to histopathology: a second reference standard in the surgical and nonsurgical treatment of low-grade gliomas. Neurosurgery 58(6): 1099–1107PubMedGoogle Scholar
  70. 70.
    Law M, Yang S, Babb JS, Knopp EA, Golfinos JG, Zagzag D, et al. (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol 25(5): 746–55PubMedGoogle Scholar
  71. 71.
    Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S, et al. (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. Am J Neuroradiol 24(10): 1989–98PubMedGoogle Scholar
  72. 72.
    Law M, Young R, Babb J, Pollack E, Johnson G (2007) Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. Am J Neuroradiol 28(4): 761–66PubMedGoogle Scholar
  73. 73.
    Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, et al. (2008) Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247(2): 490–98PubMedGoogle Scholar
  74. 74.
    Lee YY, Van TP (1989) Intracranial oligodendrogliomas: imaging findings in 35 untreated cases. Am J Roentgenol 152(2): 361–69Google Scholar
  75. 75.
    Lev MH, Ozsunar Y, Henson JW, Rasheed AA, Barest GD, Harsh GR, et al. (2004) Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas. Am J Neuroradiol 25(2): 214–21PubMedGoogle Scholar
  76. 76.
    Levivier M, Goldman S, Pirotte B, Brucher JM, Baleriaux D, Luxen A, et al. (1995) Diagnostic yield of stereotactic brain biopsy guided by positron emission tomography with [18F] fluorodeoxyglucose. J Neurosurg 82(3): 445–52PubMedGoogle Scholar
  77. 77.
    Maia AC, Malheiros SM, da Rocha AJ, da Silva CJ, Gabbai AA, Ferraz FA, et al. (2005) MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas. Am J Neuroradiol 26(4): 777–83PubMedGoogle Scholar
  78. 78.
    Maia AC, Malheiros SM, da Rocha AJ, Stavale JN, Guimaraes IF, Borges LR, et al. (2004) Stereotactic biopsy guidance in adults with supratentorial nonenhancing gliomas: role of perfusion-weighted magnetic resonance imaging. J Neurosurg 101(6): 970–76PubMedGoogle Scholar
  79. 79.
    Maintz D, Heindel W, Kugel H, Jaeger R, Lackner KJ (2002) Phosphorus-31 MR spectroscopy of normal adult human brain and brain tumours. NMR Biomed 15(1): 18–27PubMedGoogle Scholar
  80. 80.
    Mandonnet E, Delattre JY, Tanguy ML, Swanson KR, Carpentier AF, Duffau H, et al. (2003) Continuous growth of mean tumor diameter in a subset of grade II gliomas. Ann Neurol 53(4): 524–28PubMedGoogle Scholar
  81. 81.
    Massager N, David P, Goldman S, Pirotte B, Wikler D, Salmon I, et al. (2000) Combined magnetic resonance imaging-and positron emission tomography-guided stereotactic biopsy in brainstem mass lesions: diagnostic yield in a series of 30 patients. J Neurosurg 93(6): 951–57PubMedGoogle Scholar
  82. 82.
    Massoud TF, Singh A, Gambhir SS (2008) Noninvasive molecular neuroimaging using reporter genes: part I, principles revisited. Am J Neuroradiol 29(2): 229–34PubMedGoogle Scholar
  83. 83.
    Massoud TF, Singh A, Gambhir SS (2008) Noninvasive molecular neuroimaging using reporter genes. Part II: Experimental, current, and future applications. Am J Neuroradiol 29(3): 409–18PubMedGoogle Scholar
  84. 84.
    McBride DQ, Miller BL, Nikas DL, Buchthal S, Chang L, Chiang F, et al. (1995) Analysis of brain tumors using 1H magnetic resonance spectroscopy. Surg Neurol 44(2): 137–44PubMedGoogle Scholar
  85. 85.
    . McKnight TR, dem Bussche MH, Vigneron DB, Lu Y, Berger MS, McDermott MW, et al. (2002) Histopathological validation of a three-dimensional magnetic resonance spectroscopy index as a predictor of tumor presence. J Neurosurg 97(4): 794–802PubMedGoogle Scholar
  86. 86.
    McKnight TR, Lamborn KR, Love TD, Berger MS, Chang S, Dillon WP, et al. (2007) Correlation of magnetic resonance spectroscopic and growth characteristics within Grades II and III gliomas. J Neurosurg 106(4): 660–66PubMedGoogle Scholar
  87. 87.
    Megyesi JF, Kachur E, Lee DH, Zlatescu MC, Betensky RA, Forsyth PA, et al. (2004) Imaging correlates of molecular signatures in oligodendrogliomas. Clin Cancer Res 10(13): 4303–06PubMedGoogle Scholar
  88. 88.
    Meyerand ME, Pipas JM, Mamourian A, Tosteson TD, Dunn JF (1999) Classification of biopsy-confirmed brain tumors using single-voxel MR spectroscopy. Am J Neuroradiol 20(1): 117–23PubMedGoogle Scholar
  89. 89.
    Mineura K, Sasajima T, Kowada M, Ogawa T, Hatazawa J, Uemura K (1996) Long-term positron emission tomography evaluation of slowly progressive gliomas. Eur J Cancer 32A(7): 1257–60PubMedGoogle Scholar
  90. 90.
    Moller-Hartmann W, Herminghaus S, Krings T, Marquardt G, Lanfermann H, Pilatus U, et al. (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 44(5): 371–81PubMedGoogle Scholar
  91. 91.
    Moritani T, Ekholm S, Westesson P-L, Hiwatashi A (2005) Brain neoplasms. In: Moritani T, Ekholm S, Westesson P-L (eds)Diffusion-weighted MR imaging of the brain. Springer, Berlin Heidelberg, pp 161–80Google Scholar
  92. 92.
    Munch-Petersen B, Cloos L, Tyrsted G, Eriksson S (1991) Diverging substrate specificity of pure human thymidine kinases 1 and 2 against antiviral dideoxynucleosides. J Biol Chem 266(14): 9032–38PubMedGoogle Scholar
  93. 93.
    Murphy M, Loosemore A, Clifton AG, Howe FA, Tate AR, Cudlip SA, et al. (2002) The contribution of proton magnetic resonance spectroscopy (1H MRS) to clinical brain tumour diagnosis. Br J Neurosurg 16(4): 329–34PubMedGoogle Scholar
  94. 94.
    Murphy PS, Viviers L, Abson C, Rowland IJ, Brada M, Leach MO, et al. (2004) Monitoring temozolomide treatment of low-grade glioma with proton magnetic resonance spectroscopy. Br J Cancer 90(4): 781–86PubMedGoogle Scholar
  95. 95.
    Muti M, Aprile I, Principi M, Italiani M, Guiducci A, Giulianelli G, et al. (2002) Study on the variations of the apparent diffusion coefficient in areas of solid tumor in high-grade gliomas. Magn Reson Imaging 20(9): 635–41PubMedGoogle Scholar
  96. 96.
    Muzi M, Vesselle H, Grierson JR, Mankoff DA, Schmidt RA, Peterson L, et al. (2005) Kinetic analysis of 3′-deoxy-3′-fluorothymidine PET studies: validation studies in patients with lung cancer. J Nucl Med 46(2): 274–82PubMedGoogle Scholar
  97. 97.
    Nafe R, Herminghaus S, Raab P, Wagner S, Pilatus U, Schneider B, et al. (2003) Preoperative proton-MR spectroscopy of gliomas — correlation with quantitative nuclear morphology in surgical specimen. J Neurooncol 63(3): 233–45PubMedGoogle Scholar
  98. 98.
    Negendank WG, Sauter R, Brown TR, Evelhoch JL, Falini A, Gotsis ED, et al. (1996) Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg 84(3): 449–58PubMedGoogle Scholar
  99. 99.
    Nuutinen J, Sonninen P, Lehikoinen P, Sutinen E, Valavaara R, Eronen E, et al. (2000) Radiotherapy treatment planning and long-term follow-up with [(11)C]methionine PET in patients with low-grade astrocytoma. Int J Radiat Oncol Biol Phys 48(1): 43–52PubMedGoogle Scholar
  100. 100.
    Ogawa T, Inugami A, Hatazawa J, Kanno I, Murakami M, Yasui N, et al. (1996) Clinical positron emission tomography for brain tumors: comparison of fludeoxyglucose F 18 and L-methyl-11C-methionine. Am J Neuroradiol 17(2): 345–53PubMedGoogle Scholar
  101. 101.
    Ogawa T, Shishido F, Kanno I, Inugami A, Fujita H, Murakami M, et al. (1993) Cerebral glioma: evaluation with methionine PET. Radiology 186(1): 45–53PubMedGoogle Scholar
  102. 102.
    Padhani AR, Krohn KA, Lewis JS, Alber M (2007) Imaging oxygenation of human tumours. Eur Radiol 17(4): 861–72PubMedGoogle Scholar
  103. 103.
    Pallud J, Mandonnet E, Duffau H, Kujas M, Guillevin R, Galanaud D, et al. (2006) Prognostic value of initial magnetic resonance imaging growth rates for World Health Organization Grade II gliomas. Ann Neurol 60(3): 380–83PubMedGoogle Scholar
  104. 104.
    Patronas NJ, Brooks RA, DeLaPaz RL, Smith BH, Kornblith PL, Di Chiro G (1983) Glycolytic rate (PET) and contrast enhancement (CT) in human cerebral gliomas. Am J Neuroradiol 4(3): 533–35PubMedGoogle Scholar
  105. 105.
    Patronas NJ, Di Chiro G, Kufta C, Bairamian D, Kornblith PL, Simon R, et al. (1985) Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 62(6): 816–22PubMedGoogle Scholar
  106. 106.
    Pena A, Green HAL, Carpenter TA, Price SJ, Pickard JD, Gillard JH (2006) Enhanced visualization and quantification of magnetic resonance diffusion tensor imaging using the p:q tensor decomposition. Br J Radiol 79(938): 101–09PubMedGoogle Scholar
  107. 107.
    Pirotte B, Goldman S, Dewitte O, Massager N, Wikler D, Lefranc F, et al. (2006) Integrated positron emission tomography and magnetic resonance imaging-guided resection of brain tumors: a report of 103 consecutive procedures. J Neurosurg 104(2): 238–53PubMedGoogle Scholar
  108. 108.
    Pirotte B, Goldman S, Massager N, David P, Wikler D, Lipszyc M, et al. (2004) Combined use of 18F-fluorodeoxyglucose and 11C-methionine in 45 positron emission tomographyguided stereotactic brain biopsies. J Neurosurg 101(3): 476–83PubMedGoogle Scholar
  109. 109.
    Pirotte B, Goldman S, Salzberg S, Wikler D, David P, Vandesteene A, et al. (2003) Combined positron emission tomography and magnetic resonance imaging for the planning of stereotactic brain biopsies in children: experience in 9 cases. Pediatr Neurosurg 38(3): 146–55PubMedGoogle Scholar
  110. 110.
    Price SJ (2007) The role of advanced MR imaging in understanding brain tumour pathology. Br J Neurosurg 21(6): 562–75PubMedGoogle Scholar
  111. 111.
    Price SJ, Burnet NG, Donovan T, Green HA, Pena A, Antoun NM, et al. (2003) Diffusion tensor imaging of brain tumours at 3T: a potential tool for assessing white matter tract invasion? Clin Radiol 58(6): 455–62PubMedGoogle Scholar
  112. 112.
    Price SJ, Fryer TD, Cleij MC, Dean AF, Joseph J, Salvador R, et al. (2008) Imaging regional variation of cellular proliferation in gliomas using 3′-deoxy-3′-[18F] fluorothymidine positron-emission tomography: an image-guided biopsy study. Clin Radiol [Epub ahead of print]:-doi:10.1016/j.crad.2008.01.016Google Scholar
  113. 113.
    Price SJ, Jena R, Burnet NG, Hutchinson PJ, Dean AF, Pena A, et al. (2006) Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: an image-guided biopsy study. Am J Neuroradiol 27(9): 1969–74PubMedGoogle Scholar
  114. 114.
    Price SJ, Pena A, Burnet NG, Jena R, Green HA, Carpenter TA, et al. (2004) Tissue signature characterisation of diffusion tensor abnormalities in cerebral gliomas. Eur Radiol 14(10): 1909–17PubMedGoogle Scholar
  115. 115.
    Recht LD, Lew R, Smith TW (1992) Suspected low-grade glioma: is deferring treatment safe? Ann Neurol 31(4): 431–36PubMedGoogle Scholar
  116. 116.
    Reijneveld JC, van der GJ, Ramos LM, Bromberg JE, Taphoorn MJ (2005) Proton MRS imaging in the follow-up of patients with suspected low-grade gliomas. Neuroradiology 47(12): 887–91PubMedGoogle Scholar
  117. 117.
    Ribom D, Eriksson A, Hartman M, Engler H, Nilsson A, Langstrom B, et al. (2001) Positron emission tomography (11)C-methionine and survival in patients with low-grade gliomas. Cancer 92(6): 1541–49PubMedGoogle Scholar
  118. 118.
    Ribom D, Smits A (2005) Baseline 11C-methionine PET reflects the natural course of grade 2 oligodendrogliomas. Neurol Res 27(5): 516–21PubMedGoogle Scholar
  119. 119.
    Rock JP, Hearshen D, Scarpace L, Croteau D, Gutierrez J, Fisher JL, et al. (2002) Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery 51(4): 912–20PubMedGoogle Scholar
  120. 120.
    Rock JP, Scarpace L, Hearshen D, Gutierrez J, Fisher JL, Rosenblum M, et al. (2004) Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image-guided histopathology with special attention to radiation necrosis. Neurosurgery 54(5): 1111–19PubMedGoogle Scholar
  121. 121.
    Roelcke U, von Ammon K, Hausmann O, Kaech DL, Vanloffeld W, Landolt H, et al. (1999) Operated low grade astrocytomas: a long term PET study on the effect of radiotherapy. J Neurol Neurosurg Psychiatry 66(5): 644–47PubMedGoogle Scholar
  122. 122.
    Saga T, Kawashima H, Araki N, Takahashi JA, Nakashima Y, Higashi T, et al. (2006) Evaluation of primary brain tumors with FLT-PET: usefulness and limitations. Clin Nucl Med 31(12): 774–80PubMedGoogle Scholar
  123. 123.
    Scott JN, Brasher PMA, Sevick RJ, Rewcastle NB, Forsyth PA (2002) How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology 59(6): 947–49PubMedGoogle Scholar
  124. 124.
    Setzer M, Herminghaus S, Marquardt G, Tews DS, Pilatus U, Seifert V, et al. (2007) Diagnostic impact of proton MR-spectroscopy versus image-guided stereotactic biopsy. Acta Neurochir (Wien) 149(4): 379–86Google Scholar
  125. 125.
    Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. (1998) Imaging proliferation in vivo with [F-18] FLT and positron emission tomography. Nat Med 4(11): 1334–36PubMedGoogle Scholar
  126. 126.
    Shin JH, Lee HK, Kwun BD, Kim JS, Kang W, Choi CG, et al. (2002) Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. Am J Roentgenol 179(3): 783–89Google Scholar
  127. 127.
    Sijens PE, Heesters MA, Enting RH, van der Graaf WT, Potze JH, Irwan R, et al. (2007) Diffusion tensor imaging and chemical shift imaging assessment of heterogeneity in lowgrade glioma under temozolomide chemotherapy. Cancer Invest 25(8): 706–710PubMedGoogle Scholar
  128. 128.
    Sijens PE, Oudkerk M (2002) 1H chemical shift imaging characterization of human brain tumor and edema. Eur Radiol 12(8): 2056–61PubMedGoogle Scholar
  129. 129.
    Spampinato MV, Smith JK, Kwock L, Ewend M, Grimme JD, Camacho DL, et al. (2007) Cerebral blood volume measurements and proton MR spectroscopy in grading of oligodendroglial tumors. Am J Roentgenol 188(1): 204–12Google Scholar
  130. 130.
    Stockhammer F, Thomale UW, Plotkin M, Hartmann C, Von DA (2007) Association between fluorine-18-labeled fluorodeoxyglucose uptake and 1p and 19q loss of heterozygosity in World Health Organization Grade II gliomas. J Neurosurg 106(4): 633–37PubMedGoogle Scholar
  131. 131.
    Sugahara T, Korogi Y, Kochi M, Ikushima I, Hirai T, Okuda T, et al. (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. Am J Roentgenol 171(6): 1479–86Google Scholar
  132. 132.
    Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, et al. (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9(1): 53–60PubMedGoogle Scholar
  133. 133.
    Sugahara T, Korogi Y, Kochi M, Ushio Y, Takahashi M (2001) Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. Am J Neuroradiol 22(7): 1306–15PubMedGoogle Scholar
  134. 134.
    Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T, et al. (2000) Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. Am J Neuroradiol 21(5): 901–09PubMedGoogle Scholar
  135. 135.
    Sundgren PC, Fan X, Weybright P, Welsh RC, Carlos RC, Petrou M, et al. (2006) Differentiation of recurrent brain tumor versus radiation injury using diffusion tensor imaging in patients with new contrast-enhancing lesions. Magn Reson Imaging 24(9): 1131–42PubMedGoogle Scholar
  136. 136.
    Tamura M, Shibasaki T, Zama A, Kurihara H, Horikoshi S, Ono N, et al. (1998) Assessment of malignancy of glioma by positron emission tomography with 18F-fluorodeoxyglucose and single photon emission computed tomography with thallium-201 chloride. Neuroradiology 40(4): 210–15PubMedGoogle Scholar
  137. 137.
    Tate AR, Underwood J, Acosta DM, Julia-Sape M, Majos C, Moreno-Torres A, et al. (2006) Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed 19(4): 411–34PubMedGoogle Scholar
  138. 138.
    Tedeschi G, Lundbom N, Raman R, Bonavita S, Duyn JH, Alger JR, et al. (1997) Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg 87(4): 516–24PubMedGoogle Scholar
  139. 139.
    Thiel A, Pietrzyk U, Sturm V, Herholz K, Hovels M, Schroder R (2000) Enhanced accuracy in differential diagnosis of radiation necrosis by positron emission tomography-magnetic resonance imaging coregistration: technical case report. Neurosurgery 46(1): 232–34PubMedGoogle Scholar
  140. 140.
    Tofts PS, Benton CE, Weil RS, Tozer DJ, Altmann DR, Jager HR, et al. (2007) Quantitative analysis of whole-tumor Gd enhancement histograms predicts malignant transformation in low-grade gliomas. J Magn Reson Imaging 25(1): 208–14PubMedGoogle Scholar
  141. 141.
    Tozer DJ, Jager HR, Danchaivijitr N, Benton CE, Tofts PS, Rees JH, et al. (2007) Apparent diffusion coefficient histograms may predict low-grade glioma subtype. NMR Biomed 20(1): 49–57PubMedGoogle Scholar
  142. 142.
    Tsuchida T, Takeuchi H, Okazawa H, Tsujikawa T, Fujibayashi Y (2008) Grading of brain glioma with 1-11C-acetate PET: comparison with 18F-FDG PET. Nucl Med Biol 35(2): 171–76PubMedGoogle Scholar
  143. 143.
    Tsui EY, Chan JH, Leung TW, Yuen MK, Cheung YK, Luk SH, et al. (2000) Radionecrosis of the temporal lobe: dynamic susceptibility contrast MRI. Neuroradiology 42(2): 149–52PubMedGoogle Scholar
  144. 144.
    Valk PE, Mathis CA, Prados MD, Gilbert JC, Budinger TF (1992) Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med 33(12): 2133–37PubMedGoogle Scholar
  145. 145.
    Van Laere K, Ceyssens S, Van Calenbergh F, de Groot T, Menten J, Flamen P, et al. (2005) Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 32(1): 39–51Google Scholar
  146. 146.
    Vuori K, Kankaanranta L, Hakkinen AM, Gaily E, Valanne L, Granstrom ML, et al. (2004) Low-grade gliomas and focal cortical developmental malformations: differentiation with proton MR spectroscopy. Radiology 230(3): 703–08PubMedGoogle Scholar
  147. 147.
    Warburg O (1956) On the origin of cancer cells. Science 123(3191): 309–14Google Scholar
  148. 148.
    White ML, Zhang Y, Kirby P, Ryken TC (2005) Can tumor contrast enhancement be used as a criterion for differentiating tumor grades of oligodendrogliomas? Am J Neuroradiol 26(4): 784–90PubMedGoogle Scholar
  149. 149.
    Yaghoubi SS, Jensen MC, Satyamurthy N, Budhiraja S, Paik D, Czernin J, et al. (2009) Noninvasive detection of therapeutic cytolytic Tcells with 18F-FHBG PET in a patient with glioma. Nat Clin Prac Oncol 6(1): 53–58Google Scholar
  150. 150.
    Yamamoto Y, Nishiyama Y, Kimura N, Kameyama R, Kawai N, Hatakeyama T, et al. (2008) (11)C-Acetate PET in the evaluation of brain glioma: comparison with (11)C-Methionine and (18)F-FDG-PET. Mol Imaging Biol, Jun 10 [Epub ahead of print]Google Scholar
  151. 151.
    Yoshimoto M, Waki A, Yonekura Y, Sadato N, Murata T, Omata N, et al. (2001) Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol 28 (2): 117–22Google Scholar

Copyright information

© Springer-Verlag/Wien 2010

Authors and Affiliations

  • Stephen J. Price
    • 1
  1. 1.Academic Neurosurgery Division, Department of Clinical NeurosciencesAddenbrooke’s HospitalCambridgeUK

Personalised recommendations