Advertisement

Introduction

  • Basudeb GhoshEmail author
  • Sachendra  N. Sinha
  • M. V. Kartikeyan
Chapter
  • 828 Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 187)

Abstract

This chapter deals with a brief review of fractal electrodynamics including fractal antenna, fractal frequency selective surface and metamaterials. A brief review of different classes’ of aperture coupling problems in waveguides, conducting screens and cavities has also being reported here. Based on the review work, several aperture coupling problems involving rectangular waveguides, conducting screens and cavities are identified.

Keywords

Fractal Geometry Patch Antenna Rectangular Waveguide Fractal Aperture Sierpinski Gasket 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B.B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, New York, 1982)zbMATHGoogle Scholar
  2. 2.
    H.O. Peitgen, H. Jurgens, D. Saupe, Chaos and Fractals: New Frontiers of Science (Springer, New York, 1992)Google Scholar
  3. 3.
    J.F. Gouyet, Physics and Fractal structures (Springer, New York, 1996)Google Scholar
  4. 4.
    D.H. Werner, R. Mittra, Frontiers in Electromagnetics (IEEE Press, New York, 2000)Google Scholar
  5. 5.
    D.H. Werner, S. Ganguly, An overview of fractal antenna engineering research. IEEE Antennas Propag. Mag. 45(1), 38–57 (2003)ADSGoogle Scholar
  6. 6.
    C. Puente, J. Romeu, R. Pous, X. Garcia, F. Benitez, Fractal multiband antenna based on Sierpinski gasket. Electron. Lett. 32(1), 1–2 (1996)Google Scholar
  7. 7.
    C. Puente, J. Romeu, R. Pous, A. Cardama, On the behavior of the Sierpinski multiband antenna. Antennas Propag. 46(4), 517–524 (1998)ADSzbMATHGoogle Scholar
  8. 8.
    C. Borja, C. Puente, A. Medina, Iterative network model to predict the behavior of Sierpinski fractal network. Electron. Lett. 34(15), 1443–1445 (1998)Google Scholar
  9. 9.
    C. Puente, C. Borja, M. Navarro, J. Romeu, An iterative model for fractal antennas: application to the Sierpinski gasket antenna. Antennas Propag. 48(5), 713–719 (2000)Google Scholar
  10. 10.
    C. Puente, J. Romeu, R. Bartoleme, R. Pous, Perturbation of the Sierpinski antenna to allocate operating bands. Electron. Lett. 32(24), 2186–2188 (1996)Google Scholar
  11. 11.
    C. Puente, M. Navarro, J. Romeu, R. Pous, Variations on the fractal Sierpinski antenna flare angle. Antennas Propag. 4, 2340–2343 (1998)Google Scholar
  12. 12.
    S.R. Best, On the significance of self-similar fractal geometry in determining the multiband behavior of the Sierpinski gasket antenna. IEEE Antennas Wirel. Propag. Lett. 1, 22–25 (2002)ADSGoogle Scholar
  13. 13.
    S.R. Best, Operating band comparison of the perturbed sierpinski and modified parany gasket antennas. IEEE Antennas Wirel. Propag. Lett. 1, 35–38 (2002)ADSGoogle Scholar
  14. 14.
    S.R. Best, On the radiation pattern characteristics of the Sierpinski and modified parany gasket antennas. IEEE Antennas Wirel. Propag. Lett. 1, 39–42 (2002)ADSGoogle Scholar
  15. 15.
    R.K. Mishra, R. Ghatak, D.R. Poddar, Design formula for Sierpinski gasket pre-fractal planar monopole antennas. IEEE Antennas Propag. Mag. 3(3), 104–107 (2008)ADSGoogle Scholar
  16. 16.
    C. Puente, J. Romeu, R. Pous, J. Ramis, A. Hijazo, Small but long koch fractal monopole. Electron. Lett. 34(1), 9–10 (1998)Google Scholar
  17. 17.
    C. Puente, J. Romeu, A. Cardama, The koch monopole: a small fractal antenna. IEEE Trans. Antennas Propag. 48(11), 1773–1781 (2000)ADSGoogle Scholar
  18. 18.
    S.R. Best, A discusson on the significance of geometry in determining the resonant behavior of fractal and other non-euclidean wire antennas. IEEE Antennas Propag. Mag. 45(3), 9–28 (2003)ADSGoogle Scholar
  19. 19.
    S.R. Best, On the performance properties of the koch fractal and other bent wire monopoles. IEEE Trans. Antennas Propag. 51(6), 1292–1300 (2003)ADSGoogle Scholar
  20. 20.
    K.J. Vinoy, K.A. Jose, V.K. Varadan, On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using koch curve. IEEE Trans. Antennas Propag. 51(9), 2296–2303 (2003)ADSGoogle Scholar
  21. 21.
    K.J. Vinoy, K.A. Jose, V.K. Varadan, V.V. Varadan, Resesonant frequency of Hilbert curve fractal antenna. Antennas Propag. 3, 648–651 (2001)Google Scholar
  22. 22.
    K.J. Vinoy, K.A. Jose, V.K. Varadan, V.V. Varadan, Hilbert curve fractal antenna: a small resonant antenna for VHF/UHF applications. Microwave Opt. Tech. Lett. 29(4), 215–219 (2001)Google Scholar
  23. 23.
    K.J. Vinoy, K.A. Jose, V.K. Varadan, V.V. Varadan, Hilbert curve antenna with reconfigurable characteristics, in Proceedings of IEEE International Symposium on Microwave Theory and Technology, 2001, pp. 381–384Google Scholar
  24. 24.
    J.P. Gianvittorio, Fractal antennas: design, characterization and applications. Master’s thesis, Department of Electrical Engineering, University of California, Los Angeles, 2000Google Scholar
  25. 25.
    J.P. Gianvittorio, Y. Rahmat-Samii, Fractal antennas: a novel antenna miniaturization technique, and applications. IEEE Antennas Propag. Mag. 44(1), 20–36 (2002)ADSGoogle Scholar
  26. 26.
    F. Arazm, R. Karimzadeh, C. Ghobadi, J. Norinia, Square loop antenna miniaturization using new fractal geometry, in Proceedings of 6th International Conference on Advanced Communication Technology, 2004, pp. 164–169Google Scholar
  27. 27.
    R. Ataeiseresht, C. Ghobadi, J. Nourinia, A novel analysis of minkowski fractal microstrip patch antenna. J. Electromagn. Waves Appl. 20(8), 1115–1127 (2006)Google Scholar
  28. 28.
    A.R. Harish, A. Agarwal, N. Kuchhal, Compact loop antennas and arrays, in Proceedings of International Conference on Antenna Technologies (ICAT-2005), 2005, pp. 531–534Google Scholar
  29. 29.
    R.K. Joshi, A.R. Harish, Broadband concentric rings fractal slot antenna, in 28th General Assembly of URSI, New Delhi, India, Oct 2005Google Scholar
  30. 30.
    R.K. Joshi, A.R. Harish, Parasitically loaded Vivaldi antenna, in Proceedings of International Conference on Antenna Technologies (ICAT-2005), 2005, pp. 525–529Google Scholar
  31. 31.
    A.R. Harish, R.K. Joshi, Studies on application of fractal based geometries in printed antenna structures, in IEEE Applied Electromagnetics Conference (AEMC-2007), Kolkata, India, Dec 2007, pp. 1–4Google Scholar
  32. 32.
    W. Chen, G. Wang, C. Zhang, Small size microstrip patch antennas combining koch and Sierpinski fractal shapes. IEEE Antennas Wirel. Propag. Lett. 7, 738–741 (2008)ADSGoogle Scholar
  33. 33.
    J. Anguera, E. Martinez, C. Puente, C. Borja, J. Soler, Broadband dual frequency microstrip patch antenna with modified Sierpinski fractal geometry. IEEE Trans. Antennas Propag. 52(1), 66–73 (2004)ADSGoogle Scholar
  34. 34.
    J. Anguera, E. Martinez, C. Puente, C. Borja, J. Soler, Broadband tripple frequency microstrip patch radiator combining a dual band modified Sierpinski fractal and a monoband antenna. IEEE Trans. Antennas Propag. 54(11), 3367–3373 (2006)ADSGoogle Scholar
  35. 35.
    J. Romeu, C. Borja, S. Blanch, High directivity modes in the koch island fractal patch antenna, in Proceedings of IEEE International Symposium on Antennas Propagation, vol. 3, Salt Lake City, USA, July 2000, pp. 1696–1699Google Scholar
  36. 36.
    C. Borja, G. Font, S. Blanch, J. Romeu, High directivity fractal boundary microstrip patch antenna. Electron. Lett. 36(9), 778–779 (2000)Google Scholar
  37. 37.
    J. Anguera, C. Puente, C. Borja, J. Soler, Dual frequency broadband stacked microstrip antenna using a reactive loading and a fractal shaped radiating edge. IEEE Antennas Wirel. Propag. Lett. 6, 309–312 (2007)ADSGoogle Scholar
  38. 38.
    K. Zhang, C. Chen, C. Guo, J. Xu, On the behavior of conformal Sierpinski fractal microstrip antenna. Millimeter Wave Tech. 1073–1076 (2008)Google Scholar
  39. 39.
    K. Zhang, Q. Zhang, C. Guo, J. Xu, Analysis of conformal Sierpinski fractal microstrip antenna. Millimeter Wave Tech. 1106–1109 (2008)Google Scholar
  40. 40.
    D.E. Anagnostou, J. Papapolymerou, M.M. Tentzeris, C.G. Christodoulou, A printed log-periodic Koch-dipole array (LPKDA). IEEE Antennas Wirel. Propag. Lett. 7, 456–460 (2008)ADSGoogle Scholar
  41. 41.
    R.H. Patnam, Broadband CPW-fed planar Koch fractal loop antenna. IEEE Antennas Wirel. Propag. Lett. 7, 429–431 (2008)ADSGoogle Scholar
  42. 42.
    D.D. Krishna, M. Gopikrishna, C.K. Anandan, P. Mohanan, K. Vasudevan, CPW-fed Koch fractal slot antenna for WLAN/WiMAX applications. IEEE Antennas Wirel. Propag. Lett. 7, 389–392 (2008)ADSGoogle Scholar
  43. 43.
    D. Chang, B. Zeng, J. Liu, CPW-fed circular fractal slot antenna design for dual-band applications. IEEE Trans. Antennas Propag. 56(12), 3630–3636 (2008)ADSGoogle Scholar
  44. 44.
    R. Ghatak, R.K. Mishra, D.R. Poddar, Perturbed Sierpinski carpet antenna with CPW feed for IEEE 802.11 a/b WLAN application. IEEE Antennas Wirel. Propag. Lett. 7, 742–744 (2008)ADSGoogle Scholar
  45. 45.
    L. Lizzi, F. Viani, E. Zeni, A. Massa, A DVBH/GSM/UMTS planar antenna for multimode wireless devices. IEEE Antennas Wirel. Propag. Lett. 8, 568–571 (2009)ADSGoogle Scholar
  46. 46.
    A. Ramadan, K.Y. Kabalan, A. El-Hajj, S. Khoury, M. Al-Husseini, A reconfigurable u-Koch microstrip antenna for wireless applications. Prog. Electromagnet. Res. 93, 355–367 (2009)Google Scholar
  47. 47.
    E.E.C. de Oliveira, P.H. da F. Silva, A.L.P.S. Campos, S.G. da Silva, Overall size antenna reduction using fractal elements. Microwave Opt. Technol. Lett. 51(3), 671–675 (2009)Google Scholar
  48. 48.
    M. Comisso, Theoretical and numerical analysis of the resonant behaviour of the minkowski fractal dipole antenna. IET Microwaves Antennas Propag. 3(3), 456–464 (2009)Google Scholar
  49. 49.
    K.C. Hwang, Dual-wideband monopole antenna using a modified half-Sierpinski fractal gasket. Electron. Lett. 45(10), 487–489 (2009)Google Scholar
  50. 50.
    J. Anguera, J.P. Daniel, C. Borja, J. Mumbru, C. Puente, T. Leduc, K. Sayegrih, P. Van Roy, Metallized foams for antenna design: application to fractal-shaped sierpinski-carpet monopole. rogress. Electromagnet. Res. 104, 239–251 (2010)Google Scholar
  51. 51.
    S.A. Hamzah, M. Esa, N. Malik, Reduced size microwave fractal meander dipole antenna with reconfigurable feature, in Proceedings of International Symposium on Antennas and Propagation, Bangkok, Thailand, Oct 2009Google Scholar
  52. 52.
    R. Ghatak, D.R. Poddar, R.K. Mishra, Design of Sierpinski gasket fractal microstrip antenna using real coded genetic algorithm. IET Microwaves Antennas Propag. 3(7), 1133–1140 (2009)Google Scholar
  53. 53.
    R. Azaro, F. Viani, L. Lizzi, E. Zeni, A. Massa, A monopolar quad-band antenna based on a hilbert self-affine prefractal geometry. IEEE Antennas Wirel. Propag. Lett. 8, 177–180 (2009)ADSGoogle Scholar
  54. 54.
    W.J. Krzysztofik, Modified Sierpinski fractal monopole for ism-bands handset applications. IEEE Trans. Antennas Propag. 57(3), 606–615 (2009)ADSGoogle Scholar
  55. 55.
    F. Viani, Dual-band sierpinski pre-fractal antenna for 2.4 ghz-wlan and 800 mhz-lte wireless devices. Prog. Electromagnet. Res. C 35, 63–71 (2013)Google Scholar
  56. 56.
    D. Li, J. Mao, A Koch-like sided fractal bow-tie dipole antenna. IEEE Trans. Antennas Propag. 60(5), 2042–2051 (2012)ADSMathSciNetGoogle Scholar
  57. 57.
    K.C. Hwang, Broadband circularly-polarised spidron fractal slot antenna. Electron. Lett. 45(1), 3–4 (2009)Google Scholar
  58. 58.
    A. Azari, A new super wideband fractal microstrip antenna. IEEE Trans. Antennas Propag. 59(5), 1724–1727 (2011)ADSMathSciNetGoogle Scholar
  59. 59.
    R. Kumar, K.K. Sawant, Design of CPW-feed inscribed square circular fractal antenna for UWB applications. Microwave Opt. Technol. Lett. 53(5), 1079–1083 (2011)Google Scholar
  60. 60.
    H. Oraizi, S. Hedayati, Miniaturized uwb monopole microstrip antenna design by the combination of giusepe peano and Sierpinski carpet fractals. IEEE Antennas Wirel. Propag. Lett. 10, 67–70 (2011)ADSGoogle Scholar
  61. 61.
    L. Lizzi, G. Oliveri, Hybrid design of a fractal-shaped GSM/UMTS antenna. J. Electromagnet. Waves Appl. 24(5–6), 707–719 (2010)Google Scholar
  62. 62.
    L. Lizzi, R. Azaro, G. Oliveri, A. Massa, Multiband fractal antenna for wireless communication systems for emergency management. J. Electromagnet. Waves Appl. 26(1), 1–11 (2012)Google Scholar
  63. 63.
    F. Miyamaru, Y. Saito, M.W. Takeda, L. Liu, B. Hou, W. Wen, P. Sheng, Emission of terahertz radiations from fractal antennas. Appl. Phys. Lett. 95(22), 221111–221111-3 (2009)Google Scholar
  64. 64.
    J.M. Diaoa, F. Yanga, Z.P. Niea, J. Ouyanga, P. Yang, Separated fractal antennas for improved emission performance of terahertz radiations. J. Electromagnet. Waves Appl. 26(8–9), 1158–1167 (2012)Google Scholar
  65. 65.
    C. Yang, C. Tsai, S. Chen, Implantable high-gain dental antennas for minimally invasive biomedical devices. IEEE Trans. Antennas Propag. 61(5), 2380–2387 (2013)ADSGoogle Scholar
  66. 66.
    R. Nagarjun, G. George, D. Thiripurasundari, R. Poonkuzhali, Z.C. Alex, Design of a triple band planar bow-tie antenna for wearable applications, in 2013 International Conference on Communications and Signal Processing (ICCSP), 2013, pp. 1185–1189Google Scholar
  67. 67.
    J. Romeu, Y. Rahmat-Samii, A fractal based FSS with dual band characteristics, in Proceedings of IEEE International Symposium on Antennas Propagat, Aug 1999, pp. 1734–1737Google Scholar
  68. 68.
    J. Romeu, Y. Rahmat-Sammi, Dual band FSS with fractal elements. Electron. Lett. 35(9), 702–703 (1999)Google Scholar
  69. 69.
    J. Romeu, Y. Rahmat-Sammi, Fractal FSS: a novel dual band frequency selective surface. IEEE Trans. Antennas Propag. 48(7), 1097–1105 (2000)ADSGoogle Scholar
  70. 70.
    D.H. Werner, D. Lee, Design of dual polarized multiband frequency selective surfaces using fractal elements. Electron. Lett. 36(6), 487–488 (2000)Google Scholar
  71. 71.
    D.H. Warner, D. Lee, A design approach for dual polarized multiband frequency selective surface using fractal element, in Proceedings of IEEE International Symposium on Antennas Propagation, July 2000, pp. 1692–1695Google Scholar
  72. 72.
    J.P. Gianvittorio, J. Romeu, S. Blanch, Y. Rahmat-Samii, Self-similar prefractal frequency selective surfaces for multiband and dual-polarized applications. IEEE Trans. Antennas Propag. 51(11), 3088–3096 (2003)ADSGoogle Scholar
  73. 73.
    R. Holakouei, J. Nournia, C. Ghobadi, A design approach for a dual polarized, dual band reject frequency selective surface using a new fractal element. Int. J. Electron. Commun. 61(9), 568–579 (2007)Google Scholar
  74. 74.
    M. Wen, D. Lee, R. Yang, H. Wu, C. Liu, A Sierpinski fractal based dual-mode bandpass filter. Microwave Opt. Technol. Lett. 50(9), 2287–2289 (2008)Google Scholar
  75. 75.
    J. Xiao, H. Huang, W. Ji, Wideband microstrip bandpass filter using single patch resonator. Microw Millimeter Wave Tech. 1470–1473 (2008)Google Scholar
  76. 76.
    W. Chen, G. Wang, Y. Qi, Fractal shaped Hi-Lo microstrip low-pass filters with high passband performance. Microwave Opt. Technol. Lett. 49(10), 2577–2579 (2007)Google Scholar
  77. 77.
    F. Frezza, L. Pajewski, G. Schettini, Fractal two dimensional electromagnetic bandgap structures. IEEE Trans. Microwave Theory Technol. 52(1), 220–227 (2004)ADSMathSciNetGoogle Scholar
  78. 78.
    X.L. Bao, G. Ruvio, M.J. Ammann, M. John, A novel GPS patch antenna on a fractal hi-impedance surface substrate. IEEE Antennas Wirel. Propag. Lett. 5, 323–326 (2006)ADSGoogle Scholar
  79. 79.
    J. McVay, N. Engheta, A. Hoorfar, High impedance metamaterial surfaces using Hilbert curve inclusions. IEEE Microwave Wirel. Compon. Lett. 14(3), 130–132 (2004)Google Scholar
  80. 80.
    J. McVay, A. Hoorfar, N. Engheta, Thin absorbers using space-filling curve high impedance surfaces. Proc. IEEE Int. Symp. Antennas Propag. 2A, 22–25 (2005)Google Scholar
  81. 81.
    D.J. Kern, D.H. Werner, A. Monorchio, L. Lanuzza, M.J. Wilhelm, The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces. IEEE Trans. Antennas Propag. 53(1), 8–17 (2005)ADSGoogle Scholar
  82. 82.
    D. Yunfeng, L. Shaobin, W. Yong, A novel dual-band compact electromagnetic bandgap (EBG) structure and its application. Microwave Millimeter Wave Technol. 51–53 (2008)Google Scholar
  83. 83.
    J.I.A. Trindade, P.H.F. da Silva, A.L.P.S. Campos, A.G. D’Assuncao, Analysis of stop-band frequency selective surfaces with Drer’s pentagon pre-fractals patch elements. IEEE Trans. Magn. 47(5), 1518–1521 (2011)ADSGoogle Scholar
  84. 84.
    P.H. da, F. Silva, A.F. dos Santos, R.M.S. Cruz, A.G. D’Assun, dual-band bandstop frequency selective surfaces with gosper prefractal elements. Microwave Opt. Technol. Lett. 54(3), 771–775 (2012)Google Scholar
  85. 85.
    S. Zheng, Y. Yin, J. Fan, X. Yang, B. Li, W. Liu, Analysis of miniature frequency selective surfaces based on fractal antenna-filter-antenna arrays. IEEE Antennas Wirel. Propag. Lett. 11, 240–243 (2012)ADSGoogle Scholar
  86. 86.
    M.R. da Silva, C. de l. nbrega, P.H. da F. Silva, A.G. D’Assuno1, Dual-polarized band-stop fss spatial filters using vicsek fractal geometry. Microwave Opt. Technol. Lett. 55(1), 31–34 (2013)Google Scholar
  87. 87.
    C. de L. Nobrega, M.R. da Silva, W.C. de Araujo, P.H. da F. Silva, A.G. D’Assuncao, Analysis of frequency selective surfaces with T-shaped pre-fractals patch elements, in Proceedings of IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Oct 2011, pp. 694–696Google Scholar
  88. 88.
    G. Volpe, G. Volpe, R. Quidant, Fractal plasmonics: subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet. Opt. Express 19(4), 3612–3618 (2011)Google Scholar
  89. 89.
    H. Xu, G. Wang, X. Yang, X. Chen, Compact, low return-loss, and sharp-rejection uwb filter using Sierpinski carpet slot in a metamaterial transmission line. Int. J. Appl. Electromagnet. Mech. 37(4), 253–262 (2011)Google Scholar
  90. 90.
    Q. Du, J. Liu, H. Yang, X. Yi, Bilayer fractal structure with multiband left-handed characteristics. Appl. Opt. 50(24), 4798–4804 (2011)ADSGoogle Scholar
  91. 91.
    H.N.B. Phuong, D.N. Chien, T.M. Tuan, Novel design of electromagnetic bandgap using fractal geometry. Int. J. Antennas Propag. 2013 (2013)Google Scholar
  92. 92.
    M. Kufa, Z. Raida, Lowpass filter with reduced fractal defected ground structure. Electron. Lett. 49(3), 1999–2001 (2013)Google Scholar
  93. 93.
    B. Ghosh, D. Yang, J. Cheng, J.S. Fu, Bandpass characteristics of substrate integrated waveguide loaded with Hilbert curve fractal slot, in Proceedings of IEEE International Workshop on Electromagnetics (iWEM), Taipei, Taiwan, Aug 2011Google Scholar
  94. 94.
    L. Geng, G.M. Wang, C.X. Zhang, Y.W. Wang, Fractal-based composite right/left-handed transmission line and its applications in miniaturized negative-order resonant antennas. Prog. Electromagnet. Res. Lett. 36, 155–162 (2013)Google Scholar
  95. 95.
    G.L. Matthaei, L. Young, E.M.T. Jones, Microwave Filters, Impedance Matching Networks and Coupling Structures (McGraw-Hill, NewYork, 1964)Google Scholar
  96. 96.
    K. Chang, P.J. Khan, Coupling between narrow transverse inductive strips in waveguide. IEEE Trans. Microwave Theory Technol. 24(2), 101–105 (1976)ADSGoogle Scholar
  97. 97.
    H. Auda, R.F. Harrington, Inductive posts and diaphragms of arbitrary shape and number in a rectangular waveguide. IEEE Trans. Microwave Theory Technol. 32(6), 606–613 (1984)ADSGoogle Scholar
  98. 98.
    R. Safavi-Naini, R.H. MacPhie, Scattering at rectangular-to-rectangular waveguide junctions. IEEE Trans. Microwave Theory Technol. 30(11), 2060–2063 (1982)ADSGoogle Scholar
  99. 99.
    J.D. Wade, R.H. MacPhie, Scattering at circular-to-rectangular waveguide junctions. IEEE Trans. Microwave Theory Technol. 34(11), 1085–1091 (1986)ADSGoogle Scholar
  100. 100.
    M. Piloni, E. Ravenelli, M. Guglielmi, Resonant aperture filters in rectangular waveguide. Microwave Theory Technol. 3, 911–914 (1999)Google Scholar
  101. 101.
    M. Capurso, M. Piloni, M. Guglielmi, Resonant aperture filters: improved out-of-band rejection and size reduction, in Proceedings of 31st European Microwave Conference, Oct 2001, pp. 1–4Google Scholar
  102. 102.
    N.G. Paterson, I. Anderson, Bandstop iris for rectangular waveguide. Electron. Lett. 12(22), 592–594 (1976)ADSGoogle Scholar
  103. 103.
    A.A. Kirilenko, L.P. Mospan, Reflection resonances and natural oscillations of two-aperture iris in rectangular waveguide. IEEE Trans. Microwave Theory Technol. 48(8), 1419–1421 (2000)ADSGoogle Scholar
  104. 104.
    A.A. Kirilenko, L.P. Mospan, Two- and three-slot irises as bandstop filter sections. Microwave Opt. Technol. Lett. 28(8), 282–284 (2001)Google Scholar
  105. 105.
    R. Yang, A.S. Omar, Investigation of multiple rectangular aperture irises in rectangular waveguide using \({\rm {TE}}_{\rm {mn}}^{\rm x}\) modes. IEEE Trans. Microwave Theory Technol. 41(8), 1369–1374 (1993)ADSGoogle Scholar
  106. 106.
    M. Ohira, H. Deguchi, M. Tsuji, H. Shigesawa, A new dual behavior FSS resonator for waveguide filter with multiple attenuation poles, in Proceedings of 35th European Microwave Conference, Oct 2005, pp. 189–192Google Scholar
  107. 107.
    R.D. Seager, J.C. Vardaxoglou, D.S. Lockyer, Close coupled resonant aperture inserts for waveguide filtering applications. IEEE Microwave Wirel. Compon. Lett. 11(3), 112–114 (2001)Google Scholar
  108. 108.
    T. VuKhac, Solution for some waveguide discontinuities by the method of moments. IEEE Trans. Microwave Theory Technol. 20, 416–418 (1972)Google Scholar
  109. 109.
    H. Auda, R.F. Harrington, A moment solution for waveguide junction problems. IEEE Trans. Microwave Theory Technol. 31(7), 515–520 (1983)ADSGoogle Scholar
  110. 110.
    S.N. Sinha, Analysis of multiple strip discontinuity in a rectangular waveguide. Theory Technol. MTT 34(6), 696–700 (1986)Google Scholar
  111. 111.
    A. Datta, B.N. Das, A. Chakraborty, Moment method formulation of thick diaphragms in a rectangular waveguide. IEEE Trans. Microwave Theory Technol. 40(3), 592–595 (1992)ADSGoogle Scholar
  112. 112.
    B.N. Das, G.S.N. Raju, A. Chakraborty, Analysis of coplanar E-H plane T junction using dissimilar rectangular waveguides. IEEE Trans. Microwave Theory Technol. 36(3), 604–606 (1988)ADSGoogle Scholar
  113. 113.
    A.I. Khalil, A.B. Yakovlev, M.B. Steer, Efficient method-of-moments formulation for the modeling of planar conductive layers in a shielded guided-wave structure. IEEE Trans. Microwave Theory Technol. 47(9), 1730–1736 (1999)ADSGoogle Scholar
  114. 114.
    A.I. Khalil, M.B. Steer, A generalized scattering matrix method using the method of moments for electromagnetic analysis of multilayered structures in waveguides. IEEE Trans. Microwave Theory Technol. 47(11), 2151–2157 (1999)ADSGoogle Scholar
  115. 115.
    S.W. Lee, W.R. Jones, J.J. Campbell, Convergence of numerical solutions of iris type discontinuity problems. IEEE Trans. Microwave Theory Technol. MTT 19(6):528–536 (1971)Google Scholar
  116. 116.
    R. Mittra, T. Itoh, T. Li, Analysis and numerical studies of relative convergence phenomenon arising in the solution of an integral equation by the moment method. Microwave Theory Technol. MTT 20(2), 96–104 (1972)Google Scholar
  117. 117.
    M.I. Aksun, R. Mittra, Choices of expansion and testing functions for the method of moments applied to a class of electromagnetic problems. IEEE Trans. Microwave Theory Technol. 41(3), 503–509 (1993)ADSGoogle Scholar
  118. 118.
    C.C. Chen, Transmission of microwave through perforated flat plates of finite thickness. IEEE Trans. Microwave Theory Technol. 21(1), 1–6 (1973)ADSGoogle Scholar
  119. 119.
    L.P. Mospan, O.V. Chistyakova, in Proceedings of Rejection Frequency Selective Surface with Two Different Apertures Over the Period, vol. 1, June 2004, pp. 269–271Google Scholar
  120. 120.
    W. Wen, L. Zhou, J. Li, W. Ge, C.T. Chan, P. Sheng, Subwavelength photonic band gaps from planar fractals. Phys. Rev. Lett. 89(22), 223901-1–223901-4 (2002)Google Scholar
  121. 121.
    L. Zhou, C.T. Chan, P. Sheng, Theoritical studies on the transmission and reflection properties of metallic planar fractals. J. Phys. D Appl. Phys. 37, 368–373 (2004)ADSGoogle Scholar
  122. 122.
    B. Hou, G. Xu, W. Wen, Tunable band gap properties of planar metallic fractals. J. Appl. Phys. 95(22), 3231–3233 (2004)ADSGoogle Scholar
  123. 123.
    W. Wen, L. Zhou, B. Hou, C.T. Chan, P. Sheng, Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate. Phys. Rev. B72, 153406 (2005)ADSGoogle Scholar
  124. 124.
    R.F. Harrington, J.R. Mautz, A generalized network formulation for aperture problems. IEEE Trans. Antennas Propag. 24(6), 870–873 (1976)ADSGoogle Scholar
  125. 125.
    J.R. Mautz, R.F. Harrington, Electromagnetic transmission through a rectangular aperture in a perfectly conducting screen. Technical report TR-76-1. Department of Electrical and Computer Engineering, Syracuse University, New York, 1976Google Scholar
  126. 126.
    R.F. Harrington, D.T. Auckland, Electromagnetic transmission through narrow slots in thick conducting screen. Antennas Propag. AP 28(5), 616–622 (1980)Google Scholar
  127. 127.
    I. Chih-Lin, R.F. Harrington, Electromagnetic transmission through an aperture of arbitrary shape in a conducting screen. Technical report Contract No 0014–76-0225, Syracuse University, 1982Google Scholar
  128. 128.
    S.M. Rao, D.R. Wilton, A.W. Glisson, Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 30(3), 409–418 (1982)ADSGoogle Scholar
  129. 129.
    J. Lin, W.L. Curtis, M.C. Vincent, On the field distribution of an aperture. IEEE Trans. Antennas Propag. 22(3), 467–471 (1974)ADSGoogle Scholar
  130. 130.
    R.L. Gluckstern, R. Li, R.K. Cooper, Electric polarizability and magnetic susceptibility of small holes in a thin screen. IEEE Trans. Microwave Theory Technol. 38(2), 186–192 (1990)ADSGoogle Scholar
  131. 131.
    W.T. Cathey, Approximate expressions for field penetration through circular apertures. IEEE Trans. Electromagnet. Compat. 25(3), 339–345 (1983)ADSGoogle Scholar
  132. 132.
    S.V. Savov, Mutual coupling between two small circular apertures in a conducting screen. IEEE Trans. Microwave Theory Technol. 41(1), 143–146 (1993)ADSGoogle Scholar
  133. 133.
    A.E. Hajj, K.Y. Kabalan, Characteristic modes of a rectangular aperture in a perfectly conducting plane. IEEE Trans. Antennas Propag. 42(10), 1447–1450 (1994)ADSGoogle Scholar
  134. 134.
    Y.S. Kim, H.J. Eom, Fourier transform analysis of electrostatic potential distribution through a thick slit. IEEE Trans. Electromagnet. Compat. 38(1), 77–79 (1996)Google Scholar
  135. 135.
    R. Luebbers, C. Penney, Scattering from apertures in infinite ground plane using fdtd. Antennas Propag. 42(5), 731–736 (1994)Google Scholar
  136. 136.
    T.K. Sarkar, M.F. Costa, C. Lin, R.F. Harrington, Electromagnetic transmission through mesh covered apertures and arrays of apertures in a conducting screen. IEEE Trans. Antennas Propag. AP 32(9):908–913 (1984)Google Scholar
  137. 137.
    W.L. Ko, R. Mittra, Scattering by a truncated periodic array. IEEE Trans. Antennas Propag. AP 36(4):496–503 (1988)Google Scholar
  138. 138.
    T. Cwik, R. Mittra, The effects of the truncation and curvature of periodic surfaces: a strip grating. IEEE Trans. Antennas Propag. AP 36(5):612–622 (1988)Google Scholar
  139. 139.
    R. Kastner, R. Mittra, Iterative analysis of finite sized planar frequency selective surfaces with rectangular patches or perforations. IEEE Trans. Antennas Propag. AP 35(4):372–377 (1987)Google Scholar
  140. 140.
    L. Gurel, W.C. Chew, Recursive algorithms for calculating the scattering from N strips or patches. IEEE Trans. Antennas Propag. AP 38(4):507–515 (1990)Google Scholar
  141. 141.
    H.H. Park, H.J. Eom, Electromagnetic scattering form multiple rectangular apertures in a thick conducting screen. IEEE Trans. Antennas Propag. 47(6), 1056–1060 (1999)ADSGoogle Scholar
  142. 142.
    Y.B. Park, H.J. Eom, Electromagnetic transmission through multiple circular apertures in a thick conducting plane. IEEE Trans. Antennas Propag. 52(4), 1049–1055 (2004)ADSGoogle Scholar
  143. 143.
    T. Andersson, Moment method calculations on apertures using basis singular functions. IEEE Trans. Antennas Propag. 41(12), 1709–1716 (1993)ADSGoogle Scholar
  144. 144.
    S. Gupta, A. Bhattacharya, A. Chakraborty, Analysis of an open ended waveguide radiator with dielectric plug. IEE Proc. Microwave Antennas Propag. 144(2), 126–130 (1997)Google Scholar
  145. 145.
    S. Gupta, A. Chakraborty, B.N. Das, Admittance of waveguide fed slot radiators, in Proceedings of IEEE International Symposium on Antennas Propagation, vol. 2, San Jose, CA, USA, 1989, pp. 968–971Google Scholar
  146. 146.
    M.H. Cohen, T.H. Crowly, C.A. Lavis, The aperture admittance of rectangular waveguideradiating into half space. Technical report 339–22, Antenna Lab, Ohio University, Columbus, 1951Google Scholar
  147. 147.
    B.N. Das, Admittance of rectangular apertures. J. Inst. Electron. Telecommun. Eng. (India) 22(3), 133–137 (1976)ADSGoogle Scholar
  148. 148.
    A.R. Jamieson, T.R. Rozzi, Rigorous analysis of cross polarisation in flange-mounted rectangular waveguide radiators. Electron. Lett. 13(24), 742–744 (1977)ADSGoogle Scholar
  149. 149.
    R.H. MacPhie, A.I. Zaghloul, Radiation from a rectangular waveguide with infinite flang-exact solution by the correlation matrix method. IEEE Trans. Antennas Propag. AP 28(4):497–503 (1980)Google Scholar
  150. 150.
    H. Baudrand, J.W. Tao, J. Atechian, Study of radiating properties of open ended rectangular waveguides. IEEE Trans. Antennas Propag. 36(8), 1071–1077 (1988)ADSGoogle Scholar
  151. 151.
    M. Mongiardo, T. Rozzi, Singular integral equation analysis of flange mounted rectangular waveguide radiators. IEEE Trans. Antennas Propag. 41(5):556–565 (1993)Google Scholar
  152. 152.
    Z. Shen, R.H. MacPhie, A simple method for calculating the reflection coefficient of open ended waveguide. IEEE Trans. Antennas Propag. 45(4), 546–548 (1997)Google Scholar
  153. 153.
    J.R. Mautz, R.F. Harrington, Transmission from rectangular waveguide in half space through rectangular aperure. Technical report TR-76-5, Airforce Cambridge Research Lab., USA, 1976Google Scholar
  154. 154.
    J. Luzwick, R.F. Harrington, Mutual coupling analysis in a finite planar rectangular waveguide antenna array. Electromagnetics 2(1), 25–42 (1982)Google Scholar
  155. 155.
    A.J. Fenn, G.A. Thiele, B.A. Munk, Moment method analysis offinite rectangular waveguide phassed array antennas. IEEE Trans. Antennas Propag. AP 30(4):554–564 (1982)Google Scholar
  156. 156.
    J. Luzwick, R.F. Harrington, A reactively loaded aperture antenna array. IEEE Trans. Antennas Propag. AP 26(4):543–547 (1978)Google Scholar
  157. 157.
    F. Arndt, K.H. Wolff, L. Brunjes, R. Heyen, F. Siefken, Generalized moment method analysis of planar reactively loaded rectangular waveguide arrays. IEEE Trans. Antennas Propag. 37(3), 329–338 (1989)ADSGoogle Scholar
  158. 158.
    R. Garg, P. Bhartia, I. Bahl, A. Ittiboon, Microstrip Antenna Design Handbook (Artech House, London, 2001)Google Scholar
  159. 159.
    A. Hadidi, M. Hamid, Aperture field and circuit parameters of cavity-backed slot radiator. IEE Proc. Microwave Antennas Propag. Pt. H. 136(2):139–146 (1989)Google Scholar
  160. 160.
    T. Kotani, K. Hirasawa, S. Shi, Y. Chang, A rectangular cavity-backed slot antenna with parasitic slots. Proc. IEEE Int. Symp. Antennas Propag. 3, 166–168 (2001)Google Scholar
  161. 161.
    T. Kotani, K. Hirasawa, S. Song, A rectangular cavity backed S-type slot antenna. Proc. IEEE Int. Symp. Antennas Propag. 4, 22–27 (2003)Google Scholar
  162. 162.
    T. Takahashi, K. Hirasawa, A broadband rectangular-cavity-backed meandering slot antenna, in Proceedings of IEEE International Workshop Antenna Technology: Small Antennas and Novel, Metamaterials, March 2005, pp. 21–24Google Scholar
  163. 163.
    S. Shi, K. Hirasawa, Z.N. Chen, Circularly polarized rectangularly bent slot antennas backed by a rectangular cavity. IEEE Trans. Antennas Propag. 49(11), 1517–1524 (2001)ADSGoogle Scholar
  164. 164.
    T. Takahashi, T. Kotani, K. Hirasawa, S. Shi, A rectangular cavity-backed cross-loop slot antenna. Proc. IEEE Int. Symp. Antennas Propag. 2, 448–451 (2002)Google Scholar
  165. 165.
    R. Azadegan, K. Sarabandi, A compact planar folded-dipole antenna for wireless applications. Proc. IEEE Int. Symp. Antennas Propag. 1, 439–442 (2003)Google Scholar
  166. 166.
    W. Hong, N. Behdad, K. Sarabandi, Size reduction of cavity backed slot antenna. IEEE Trans. Antennas Propag. 54(5):1461–1466 (2006)Google Scholar
  167. 167.
    Y. Liu, Z. Shen, H.C. Chin, W.L. Lim, A single-feed wide and dual band cavity-backed slot antenna. Microwave Opt. Tech. Lett. 49(7), 1570–1572 (2007)Google Scholar
  168. 168.
    J. Galejs, Admittance of rectangular slot which is backed by rectangular cavity. IEEE Trans. Antennas Propag. 11(3), 119–126 (1963)ADSGoogle Scholar
  169. 169.
    A.T. Adams, Flush mounted rectangular cavity slot antennas: theory and design. IEEE Trans. Antennas Propag. AP 15(3):342–251 (1967)Google Scholar
  170. 170.
    C.R. Cockrell, The input admittance of the rectangular cavity-backed slot antenna. IEEE Trans. Antennas Propag. AP 24(3):288–294 (1976)Google Scholar
  171. 171.
    J. Hirokawa, H. Arai, N. Goto, Cavity-backed wide slot antenna. IEE Proc. Microwave Antennas Propag. Pt. H. 136(1):29–33 (1989)Google Scholar
  172. 172.
    T. Lertwiriyaprapa, C. Phongcharoenpanich, M. Krairiksh, Characterization of the input impedance of a probe excited rectangular cavity-baked slot antenna, in Proceedings of 5th International Symposium on Antennas Propagation and EM Theory, Aug 2000, pp. 654–657Google Scholar
  173. 173.
    T. Lertwiriyaprapa, C. Phongcharoenpanich, S. Kosulvit, M. Krairiksh, Analysis of impedance characteristics of probe fed rectangular cavity-backed slot antenna. Proc. IEEE Int. Symp. Antennas Propag. 1, 576–579 (2001)Google Scholar
  174. 174.
    T. Lertwiriyaprapa, C. Phongcharoenpanich, M. Krairiksh, Analysis of radiation characteristics of probe fed rectangular cavity backed slot antenna with finite ground plane. Proc. IEEE Int. Symp. Antennas Propag. 2, 714–717 (2000)Google Scholar
  175. 175.
    J.Y. Lee, T.S. Horng, N.G. Alexopoulos, Analysis of cavity-backed aperture antenas with a dielectric overlay. IEEE Trans. Antennas Propag. 42(11), 1556–1562 (1994)ADSGoogle Scholar
  176. 176.
    E.M. Biebl, G.L. Friedsam, Cavity-backed aperture antennas with dielectric and magnetic overlay. IEEE Trans. Antennas Propag. 43(11), 1226–1232 (1995)ADSGoogle Scholar
  177. 177.
    H. Moheb, L. Shafai, J. Shaker, Numerical solution of radiation from single and multiple arbitrary apertures backed by a cavity, in Proceedings of IEEE International Symposium on Antennas Propagation, Chicago, USA, July 1992, pp. 61–64Google Scholar
  178. 178.
    M.D. Deshpande, C.J. Reddy, Electromagnetic scattering from a rectangular cavity recessed in a 3D conducting surface. Contractor Report 4697, NASA, Hampton, Verginia, Oct 1995Google Scholar
  179. 179.
    M. Omiya, T. Hikage, N. Ohno, K. Horiguchi, K. Itoh, Design of cavity-backed slot antennas using the finite-difference time-domain technique. IEEE Trans. Antennas Propag. 46(12), 1853–1858 (1998)ADSGoogle Scholar
  180. 180.
    T. Hikage, M. Omiya, K. Itoh, Considerations on performance evaluation of cavity-backed slot antenna using the FDTD technique. IEEE Trans. Antennas Propag. 49(12), 1712–1717 (2001)ADSGoogle Scholar
  181. 181.
    S.M. Rao, G.K. Gothard, D.R. Wilton, Application of finite-integral technique to electromagnetic scattering by two-dimensional cavity-backed aperture in a ground plane. IEEE Trans. Antennas Propag. 46(5):679–685 (1998)Google Scholar
  182. 182.
    G. Marrocco, S. Fari, F. Bardati. A hybrid FDTD-MoM procedure for the modelling of electromagnetic radiation from the cavity backed apertures, in Proceedings of IEEE International Symposium on Antennas Propagation, vol. 4, Boston, USA, 2001, pp. 302–305Google Scholar
  183. 183.
    S.V. Georgakopoulos, A.C. Polycarpou, C.A. Balanis, C. Birtcher, Analysis of coupling between cavity-backed slot antennas: FDTD, FEM and measurements, in Proceedings of IEEE International Symposium on Antennas Propagation, vol. 1, Orlando, USA, Aug 1999, pp. 582–585Google Scholar
  184. 184.
    J.M. Jin, J.L. Volakis, A finite element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures. IEEE Trans. Antennas Propag. 39(1), 97–104 (1991)ADSGoogle Scholar
  185. 185.
    J.M. Jin, J.L. Volakis, A hybrid finite element method for scattering and radiation by microstrip patch antennas and arrays residing in a cavity. IEEE Trans. Antennas Propag. 39(11), 1598–1604 (1991)ADSGoogle Scholar
  186. 186.
    J. Gong, J.L. Volakis, A.C. Woo, H.T.G. Wang, A hybrid finite element-boundary integral method for the analysis of cavity-backed antennas of arbitrary shape. IEEE Trans. Antennas Propag. 42(9), 1233–1242 (1994)ADSGoogle Scholar
  187. 187.
    S. Baudou, P. Borderies, P. Combes, R. Mittra, Analysis of a conformal cavity backed patch antenna using hybrid FEM/MoM technique, in Proceedings of IEEE International Symposium on Antennas Propagation, vol. 2, Boston, USA, Aug 2001, pp. 354–357Google Scholar
  188. 188.
    C.J. Reddy, M.D. Deshpande, C.R. Cockrell, F.B. Beck, Analysis of three-dimensional cavity-backed aperture antennas using combined finite element method/method of moment/geometric theory of difraction technique. Technical paper 3548, NASA, Hampton, Verginia 23681–0001, Nov 1995Google Scholar
  189. 189.
    C.J. Reddy, M.D. Deshpande, C.R. Cockrell, F.B. Beck, Radiation characteristics of cavity-backed aperture antennas in finite ground plane using hybrid FEM/MoM/geometric theory of diffraction. IEEE Trans. Antennas Propag. 44(10), 1327–1333 (1996)ADSGoogle Scholar
  190. 190.
    T.N. Chang, L.C. Kuo, M.L. Chuang, Coaxial-fed cavity-backed slot antenna. Microwave Opt. Tech. Lett. 14(5), 291–294 (1997)Google Scholar
  191. 191.
    R. Azaro, S. Caorsi, M. Donelli, G.L. Gragnani, A circuital approach to evaluating the electromagnetic field on rectangular apertures backed by rectangular cavities. IEEE Trans. Microwave Theory Technol. 50(10), 2259–2266 (2002)ADSGoogle Scholar
  192. 192.
    Ansoft corporation (2004), Products. Available: http://www.ansoft.com/products/

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Basudeb Ghosh
    • 1
    Email author
  • Sachendra  N. Sinha
    • 2
  • M. V. Kartikeyan
    • 2
  1. 1.Department of AvionicsIndian Institute of Space Science and TechnologyThiruvanantapuramIndia
  2. 2.Department of Electronics and Communication EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations