Fractal Frequency Selective Diaphragms in Rectangular Waveguide

  • Basudeb GhoshEmail author
  • Sachendra  N. Sinha
  • M. V. Kartikeyan
Part of the Springer Series in Optical Sciences book series (SSOS, volume 187)


Self-similarity and space filling property of fractal geometries are explored in the design of frequency selective diaphramgs in rectangular waveguide. Several fractal geometries like Siepinski gasket, Sierpinski carpet, Hilbert curve, Minkowski fractal, plus shape fractal, Devil’s staircase fractal geometries are investigated which can be efficiently used in realizing light weight, compact and multiband waveguide filters and electromagnetic band gap (EBG) structures. It is demonstrated that the fractal geometries can reduce the resonant frequency of the diaphragms substantially and it is shown the scale factor of the fractal geometries can be used to suitably position the resonant bands.


Resonant Frequency Fractal Geometry Return Loss Rectangular Waveguide Sierpinski Gasket 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.S. Kshetrimayum, L. Zhu, Guided-wave characteristics of waveguide based periodic structures loaded with various fss strip layers. IEEE Trans. Antennas Propag. 53(1), 120–124 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    R.S. Kshetrimayum, L. Zhu, EBG design using FSS elements in rectangular waveguide. Appl. Comput. Electromagn. Soc. J. 21(2), 149–154 (2006)Google Scholar
  3. 3.
    B. Ghosh, S.N. Sinha, M.V. Kartikeyan, Investigations on fractal frequency selective diaphragms in rectangular waveguide. Int. J. RF Microwave Comput. Aided Eng. 20(2), 209–219 (2010)Google Scholar
  4. 4.
    H.O. Peitgen, H. Jurgens, D. Saupe, Chaos and Fractals: New Frontiers of Science (Springer, New York, 1992)CrossRefGoogle Scholar
  5. 5.
    R. Yang, A.S. Omar, Investigation of multiple rectangular aperture irises in rectangular waveguide using \({\rm {TE}}_{\rm {mn}}^{\rm {x}}\) modes. IEEE Trans. Microw. Theory Tech. 41(8), 1369–1374 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    B. Ghosh, S.N. Sinha, M.V. Kartikeyan, Investigations on a fractal shaped aperture in a rectangular waveguide, in Proceedings of APSYM 2006, National Symposium on Antennas and Propagation, Kochi, India (2006), pp. 131–134Google Scholar
  7. 7.
    C. Puente, J. Romeu, R. Pous, X. Garcia, F. Benitez, Fractal multiband antenna based on sierpinski gasket. Electron. Lett. 32(1), 1–2 (1996)CrossRefGoogle Scholar
  8. 8.
    J.P. Gianvittorio, J. Romeu, S. Blanch, Y. Rahmat-Samii, Self-similar prefractal frequency selective surfaces for multiband and dual-polarized applications. IEEE Trans. Antennas Propag. 51(11), 3088–3096 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Basudeb Ghosh
    • 1
    Email author
  • Sachendra  N. Sinha
    • 2
  • M. V. Kartikeyan
    • 2
  1. 1.Department of AvionicsIndian Institute of Space Science and TechnologyThiruvanantapuramIndia
  2. 2.Department of Electronics and Communication EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations