Electromagnetic Transmission Through Fractal Apertures in Conducting Screen

  • Basudeb GhoshEmail author
  • Sachendra  N. Sinha
  • M. V. Kartikeyan
Part of the Springer Series in Optical Sciences book series (SSOS, volume 187)


Fractal contains an infinite number of scaled copies of a starting geometry. Due to this fundamental property, they offer multiband characteristics and can be used for miniaturization of antenna structures. In this chapter, electromagnetic transmission through fractal shaped apertures in an infinite conducting screen has been investigated for a number of fractal geometries like Sierpinski gasket, Sierpinski carpet, Koch curve, Hilbert curve, and Mowski fractal. Equivalence principle and image theory are applied to obtain the operator equation in terms of equivalent surface current density and is solved using Method of moments (MoM). Numerical results are presented in terms of transmission coefficient and transmission cross section for both parallel and perpendicular polarizations of incident wave which show the existence of multiple transmission bands.


Resonant Frequency Incident Wave Transmission Coefficient Fractal Aperture Parallel Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T. Andersson, Moment method calculations on apertures using basis singular functions. IEEE Trans. Antennas Propag. 41(12), 1709–1716 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    B. Ghosh, S.N. Sinha, M.V. Kartikeyan, Electromagnetic transmission through fractal apertures in infinite conducting screen. Prog. Electromagn. Res. B12, 105–138 (2009)CrossRefGoogle Scholar
  3. 3.
    H.O. Peitgen, H. Jurgens, D. Saupe, Chaos and Fractals: New Frontiers of Science (Springer, New York, 1992)CrossRefGoogle Scholar
  4. 4.
    J. Romeu, Y. Rahmat-Sammi, Fractal FSS: a novel dual band frequency selective surface. IEEE Trans. Antennas Propag. 48(7), 1097–1105 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    C. Puente, M. Navarro, J. Romeu, R. Pous, Variations on the fractal Sierpinski antenna flare angle, in proceedings of the IEEE international symposium on antennas propagation, vol. 4, Atlanta, GA, June 1998, pp. 2340–2343Google Scholar
  6. 6.
    K.J. Vinoy, K.A. Jose, V.K. Varadan, On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curve. IEEE Trans. Antennas Propag. 51(9), 2296–2303 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    K.J. Vinoy, K.A. Jose, V.K. Varadan, V.V. Varadan, Hilbert curve fractal antenna: a small resonant antenna for VHF/UHF applications. Microwave Opt. Tech. Lett. 29(4), 215–219 (2001)CrossRefGoogle Scholar
  8. 8.
    J.P. Gianvittorio, Y. Rahmat-Samii, Fractal antennas: a novel antenna miniaturization technique, and applications. IEEE Antennas Propag. Mag. 44(1), 20–36 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    R. Ataeiseresht, C. Ghobadi, J. Nourinia, A novel analysis of Minkowski fractal microstrip patch antenna. J. Electromagn. Waves Appl. 20(8), 1115–1127 (2006)CrossRefGoogle Scholar
  10. 10.
    W. Wen, L. Zhou, J. Li, W. Ge, C.T. Chan, P. Sheng, Subwavelength photonic band gaps from planar fractals. Phys. Rev. Lett. 89(22), 223901-1–223901-4 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    L. Zhou, C.T. Chan, P. Sheng, Theoritical studies on the transmission and reflection properties of metallic planar fractals. J. Phys. D: Appl. Phys. 37, 368–373 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    B. Hou, G. Xu, W. Wen, Tunable band gap properties of planar metallic fractals. J. Appl. Phys. 95(22), 3231–3233 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    W. Wen, L. Zhou, B. Hou, C.T. Chan, P. Sheng, Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate. Phys. Rev. B72, 153406 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Basudeb Ghosh
    • 1
    Email author
  • Sachendra  N. Sinha
    • 2
  • M. V. Kartikeyan
    • 2
  1. 1.Department of AvionicsIndian Institute of Space Science and TechnologyThiruvanantapuramIndia
  2. 2.Department of Electronics and Communication EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations