Advertisement

Preparation of Well-Defined Surfaces, Interfaces and Thin Films

  • Hans Lüth
Chapter
  • 4.1k Downloads
Part of the Graduate Texts in Physics book series (GTP)

Abstract

The most important preparation techniques of surfaces, interfaces and thin films are presented. In this context the importance of vacuum and ultra-high vacuum (UHV) techniques is explained. Beside cleavage in UHV ion bombardment and annealing are presented as preparation techniques for clean surfaces. Special emphasis is put on evaporation and molecular beam epitaxy as well as on deposition techniques by means of gases and chemical reactions. Auger electron spectroscopy (AES) and ion mass spectroscopy (SIMS) are described as important analysis techniques in this field.

Keywords

Molecular Beam Epitaxy Auger Electron Spectroscopy Epitaxial Film Elemental Semiconductor Versus Compound Semiconductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

References

Chapter 2

  1. 2.1.
    M.A. Van Hove, W.H. Weinberg, C.-M. Chan, Low-Energy Electron Diffraction. Springer Ser. Surf. Sci., vol. 6 (Springer, Berlin, 1986) CrossRefGoogle Scholar
  2. 2.2.
    W. Espe, Über Aufdampfung von dünnen Schichten im Hochvakuum, in Ergebnisse der Hochvakuumtechnik and Physik dünner Schichten, ed. by M. von Auwärtner (Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1957), p. 67 Google Scholar
  3. 2.3.
    A.A. Chernov, Modern Crystallography III. Springer Ser. Solid-State Sci., vol. 36 (Springer, Berlin, 1984) Google Scholar
  4. 2.4.
    L.L. Chang, K. Ploog (eds.), Molecular Beam Epitaxy and Heterostructures. NATO ASI Series, vol. 87 (Nijhoff, Dordrecht, 1985) Google Scholar
  5. 2.5.
    E.H.C. Parker (ed.), The Technology and Physics of Molecular Beam Epitaxy (Plenum, New York, 1985) Google Scholar
  6. 2.6.
    M.A. Herman, H. Sitter, Molecular Beam Epitaxy, 2nd edn. Springer Ser. Mater. Sci., vol. 7 (Springer, Berlin, 1996) CrossRefGoogle Scholar
  7. 2.7.
    H. Künzel, G.H. Döhler, K. Ploog, Appl. Phys. A 27, 1–10 (1982) ADSCrossRefGoogle Scholar
  8. 2.8.
    F. Capasso (ed.), Physics of Quantum Electron Devices. Springer Ser. Electron. Photon., vol. 28 (Springer, Berlin, 1990) Google Scholar
  9. 2.9.
    J.H. Neave, B.A. Joyce, P.J. Dobson, N. Norton, Appl. Phys. A 31, 1 (1983) ADSCrossRefGoogle Scholar
  10. 2.10.
    J.R. Arthur, J. Appl. Phys. 39, 4032 (1968) ADSCrossRefGoogle Scholar
  11. 2.11.
    E. Kasper, H.J. Herzog, H. Dämbkes, Th. Ricker, Growth mode and interface structure of MBE grown SiGe structures, in Two Dimensional Systems: Physics and New Devices, ed. by G. Bauer, F. Kuchar, H. Heinrich. Springer Ser. Solid-State Sci., vol. 67 (Springer, Berlin, 1986), p. 52 CrossRefGoogle Scholar
  12. 2.12.
    E. Kasper, Silicon germanium—heterostructures on silicon substrates, in Festkörperprobleme, vol. 27, ed. by P. Grosse (Vieweg, Braunschweig, 1987), p. 265 Google Scholar
  13. 2.13.
    H. Ibach, H. Lüth, Solid-State Physics, 4th edn. (Springer, Berlin, 2009) CrossRefzbMATHGoogle Scholar
  14. 2.14.
    M.G. Craford, Recent developments in LED technology. IEEE Trans. Ed. 24, 935 (1977) CrossRefGoogle Scholar
  15. 2.15.
    R.F.C. Farrow, D.S. Robertson, G.M. Williams, A.G. Cullis, G.R. Jones, I.M. Young, P.N.J. Dennis, J. Cryst. Growth 54, 507 (1981) ADSCrossRefGoogle Scholar
  16. 2.16.
    M. Mattern, H. Lüth, Surf. Sci. 126, 502 (1983) ADSCrossRefGoogle Scholar
  17. 2.17.
    F. Arnaud d’Avitaya, S. Delage, E. Rosencher, Surf. Sci. 168, 483 (1986) ADSCrossRefGoogle Scholar
  18. 2.18.
    J.R. Waldrop, R.W. Grant, Phys. Lett. 34, 630 (1979) Google Scholar
  19. 2.19.
    E. Veuhoff, W. Pletschen, P. Balk, H. Lüth, J. Cryst. Growth 55, 30 (1981) ADSCrossRefGoogle Scholar
  20. 2.20.
    H. Lüth, Metalorganic Molecular Beam Epitaxy (MOMBE), in Proc. ESSDERC, Cambridge, GB, 1986. Inst. Phys. Conf. Ser., vol. 82 (1987), p. 135 Google Scholar
  21. 2.21.
    M.B. Panish, H. Temkin, Gas Source Molecular Beam Epitaxy. Springer Ser. Mater. Sci., vol. 26 (Springer, Berlin, 1993) Google Scholar
  22. 2.22.
    M.B. Panish, S. Sumski, J. Appl. Phys. 55, 3571 (1984) ADSCrossRefGoogle Scholar
  23. 2.23.
    O. Kayser, H. Heinecke, A. Brauers, H. Lüth, P. Balk, Chemtronics 3, 90 (1988) Google Scholar
  24. 2.24.
    G.B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice (Academic Press, Boston, 1989), p. 23 Google Scholar
  25. 2.25.
    M. Weyers, N. Pütz, H. Heinecke, M. Heyen, H. Lüth, P. Balk, J. Electron. Mater. 15, 57 (1986) ADSCrossRefGoogle Scholar
  26. 2.26.
    K. Werner, H. Heinecke, M. Weyers, H. Lüth, P. Balk, J. Cryst. Growth 81, 281 (1987) ADSCrossRefGoogle Scholar
  27. 2.27.
    R. Kaplan, J. Vac. Sci. Technol. A 1, 551 (1983) ADSCrossRefGoogle Scholar
  28. 2.28.
    G.L. Price, Collected Papers of the 2nd Int’l Conf. on Molecular Beam Epitaxy and Related Clean Surface Techniques (Jpn. Soc. Appl. Phys., Tokyo, 1982), p. 259 Google Scholar
  29. 2.29.
    H. Lüth, Surf. Sci. 299/300, 867 (1994) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hans Lüth
    • 1
    • 2
  1. 1.Forschungszentrum Jülich GmbHPeter Grünberg Institut (PGI) PGI-9: Semiconductor NanoelectronicsJülichGermany
  2. 2.Jülich Aachen Research Alliance (JARA)AachenGermany

Personalised recommendations