Scattering from Surfaces and Thin Films

  • Hans Lüth
Part of the Graduate Texts in Physics book series (GTP)


The kinematic and the dynamic scattering theory for surfaces and thin films are presented. Elastic scattering is treated in the context of low energy electron diffraction (LEED) and reflection high energy electron reflection (RHEED). Inelastic scattering of electrons is described in the context of electron energy loss (EELS) and high-resolution electron energy loss spectroscopy (HREELS). Its approximate theoretical description by dielectric theory is also supplied. As important standard characterisation techniques for thin films and multilayer systems X-ray diffraction (XRD) and ion scattering, in particular Rutherford backscattering (RBS), are described together with instructive experimental examples.


Scatter Cross Section Electron Energy Loss Spectrum Ewald Sphere Specular Direction Dielectric Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material


Chapter 4

  1. 4.1.
    G. Ertl, J. Küppers, Low Energy Electrons and Surface Chemistry, 2nd edn. (VHC, Weinheim, 1985)Google Scholar
  2. 4.2.
    M.P. Seah, W.A. Dench, Compilation of experimental data determined with various electron energies for a large variety of materials. Surf. Interf. Anal. I (1979)Google Scholar
  3. 4.3.
    H. Lüth, Quantum Physics in the Nanoworld—Schrödinger’s Cat and the Dwarfs (Springer, Berlin, 2013)CrossRefzbMATHGoogle Scholar
  4. 4.4.
    M.A. Van Hove, W.H. Weinberg, C.-M. Chan, Low-Energy Electron Diffraction. Springer Ser. Surf. Sci., vol. 6 (Springer, Berlin, 1986)CrossRefGoogle Scholar
  5. 4.5.
    K. Christmann, G. Ertl, O. Schober, Surf. Sci. 40, 61 (1973)ADSCrossRefGoogle Scholar
  6. 4.6.
    G. Ertl, in Molecular Processes on Solid Surfaces, ed. by E. Dranglis, R.D. Gretz, R.I. Jaffee (McGraw-Hill, New York, 1969), p. 147Google Scholar
  7. 4.7.
    J.B. Pendry, Low Energy Electron Diffraction (Academic Press, New York, 1974)Google Scholar
  8. 4.8.
    G. Capart, Surf. Sci. 13, 361 (1969)ADSCrossRefGoogle Scholar
  9. 4.9.
    E.G. McRae, J. Chem. Phys. 45, 3258 (1966)ADSCrossRefGoogle Scholar
  10. 4.10.
    R. Feder (ed.), Polarized Electrons in Surface Physics (World Scientific, Singapore, 1985)Google Scholar
  11. 4.11.
    H. Ibach, D.L. Mills, Electron Energy Loss Spectroscopy and Surface Vibrations (Academic Press, New York, 1982)Google Scholar
  12. 4.12.
    E. Fermi, Phys. Rev. 57, 485 (1940)ADSCrossRefGoogle Scholar
  13. 4.13.
    J. Hubbard, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 68, 976 (1955)ADSCrossRefGoogle Scholar
  14. 4.14.
    H. Fröhlich, H. Pelzer, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 68, 525 (1955)ADSCrossRefGoogle Scholar
  15. 4.15.
    H. Ibach, H. Lüth, Solid-State Physics, 4th edn. (Springer, Berlin, 2009)CrossRefzbMATHGoogle Scholar
  16. 4.16.
    H. Lüth, Surf. Sci. 126, 126 (1983)ADSCrossRefGoogle Scholar
  17. 4.17.
    R. Matz, Reine and gasbedeckte GaAs(110) Spaltflächen in HREELS, Dissertation (RWTH Aachen, 1982)Google Scholar
  18. 4.18.
    P. Grosse, Freie Elektronen in Festkörpern (Springer, Berlin, 1979)CrossRefGoogle Scholar
  19. 4.19.
    Ph. Lambin, J.-P. Vigneron, A.A. Lucas, Solid State Commun. 54, 257 (1985)ADSCrossRefGoogle Scholar
  20. 4.20.
    A. Ritz, H. Lüth, Phys. Rev. B 32, 6596 (1985)ADSCrossRefGoogle Scholar
  21. 4.21.
    N. Bündgens, Elektronenspektroskopische Untersuchungen an Sn-Schichten auf III–V Halbleiteroberflächen, Diploma Thesis (RWTH Aachen, 1984)Google Scholar
  22. 4.22.
    M. Mattern, H. Lüth, Surf. Sci. 126, 502 (1983)ADSCrossRefGoogle Scholar
  23. 4.23.
    A. Spitzer, H. Lüth, Phys. Rev. B 30, 3098 (1984)ADSCrossRefGoogle Scholar
  24. 4.24.
    S. Lehwald, J.M. Szeftel, H. Ibach, T.S. Rahman, D.L. Mills, Phys. Rev. Lett. 50, 518 (1983)ADSCrossRefGoogle Scholar
  25. 4.25.
    R.F. Willis, Surf. Sci. 89, 457 (1979)ADSCrossRefGoogle Scholar
  26. 4.26.
    H. Lüth, R. Matz, Phys. Rev. Lett. 46, 1952 (1981)CrossRefGoogle Scholar
  27. 4.27.
    R. Matz, H. Lüth, Surf. Sci. 117, 362 (1982)ADSCrossRefGoogle Scholar
  28. 4.28.
    L.C. Feldman, J.W. Mayer, Fundamentals of Surface and Thin Film Analysis (North-Holland, New York, 1986)Google Scholar
  29. 4.29.
    J.T. McKinney, M. Leys, in 8th Nat’l Conf. on Electron Probe Analysis, New Orleans, LA (1973)Google Scholar
  30. 4.30.
    J.F. van der Veen, Ion beam crystallography of surfaces and interfaces. Surf. Sci. Rep. 5, 199 (1985)ADSCrossRefGoogle Scholar
  31. 4.31.
    L.C. Feldman, J.W. Mayer, S.T. Picraux, Materials Analysis by Ion Channeling (Academic Press, New York, 1982)Google Scholar
  32. 4.32.
    Priv. communication by S. Mantl (ISI, Research Center Jülich, 1990)Google Scholar
  33. 4.33.
    J. Haskell, E. Rimini, J.W. Mayer, J. Appl. Phys. 43, 3425 (1972)ADSCrossRefGoogle Scholar
  34. 4.34.
    J.U. Anderson, O. Andreason, J.A. Davis, E. Uqgerhoj, Radiat. Eff. 7, 25 (1971)ADSCrossRefGoogle Scholar
  35. 4.35.
    R.M. Tromp, The structure of silicon surfaces, Dissertation (University of Amsterdam, 1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hans Lüth
    • 1
    • 2
  1. 1.Forschungszentrum Jülich GmbHPeter Grünberg Institut (PGI) PGI-9: Semiconductor NanoelectronicsJülichGermany
  2. 2.Jülich Aachen Research Alliance (JARA)AachenGermany

Personalised recommendations