Advertisement

Surface Phonons

  • Hans Lüth
Chapter
  • 4.1k Downloads
Part of the Graduate Texts in Physics book series (GTP)

Abstract

The existence of surface lattice vibrations, surface phonons, is explained by means of the model of a linear chain of atoms. The extension to two- and three-dimensional systems as surfaces on bulk crystals consisting of more than one atomic species leads to Rayleigh waves and optical surface phonons. Hereby Fuchs–Kliewer phonons, their coupling to electronic surface plasmons and their detection by HREELS play a major role. Atom and molecular beam scattering are presented as essential investigation tools for surface phonons.

Keywords

Rayleigh Wave Dielectric Function Bulk Mode Vibrational Amplitude Surface Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

References

Chapter 5

  1. 5.1.
    M. Born, R. Oppenheimer, Ann. Phys. (Leipz.) 84, 457 (1927)ADSCrossRefzbMATHGoogle Scholar
  2. 5.2.
    G. Benedek, Surface lattice dynamics, in Dynamic Aspects of Surface Physics. LV III Corso (Editrice Compositori, Bologna, 1974), p. 605Google Scholar
  3. 5.3.
    A.A. Maradudin, R.F. Wallis, L. Dobrzinski, Handbook of Surface and Interfaces III, Surface Phonons and Polaritons (Garland STPM Press, New York, 1980)Google Scholar
  4. 5.4.
    L.M. Brekhovskikh, O.A. Godin, Acoustics of Layered Media I, II. Springer Ser. Wave Phen., vols. 5, 10 (Springer, Berlin, 1990/1992)CrossRefGoogle Scholar
  5. 5.5.
    L.M. Brekhovskikh, V. Goncharov, Mechanics of Continua and Wave Dynamics, 2nd edn. Springer Ser. Wave Phen., vol. 1 (Springer, Berlin, 1994)CrossRefzbMATHGoogle Scholar
  6. 5.6.
    E.A. Ash, E.G.S. Paige (eds.), Rayleigh-Wave Theory and Application. Springer Ser. Wave Phen., vol. 2 (Springer, Berlin, 1985)Google Scholar
  7. 5.7.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity VII, Course of Theoretical Physics (Pergamon, London, 1959), p. 105Google Scholar
  8. 5.8.
    J. Lindhard, Kgl. Danske Videnskab Selskab. Mat.-Fys. Medd. 28(8), 1 (1954)MathSciNetGoogle Scholar
  9. 5.9.
    A. Stahl, Surf. Sci. 134, 297 (1983)ADSCrossRefGoogle Scholar
  10. 5.10.
    R. Matz, H. Lüth, Phys. Rev. Lett. 46, 500 (1981)ADSCrossRefGoogle Scholar
  11. 5.11.
    M. Hass, B.W. Henvis, J. Phys. Chem. Solids 23, 1099 (1962)ADSCrossRefGoogle Scholar
  12. 5.12.
    H. Ibach, D.L. Mills, Electron Energy Loss Spectroscopy and Surface Vibrations (Academic Press, New York, 1982)Google Scholar
  13. 5.13.
    H. Lüth, Vacuum 38, 223 (1988)CrossRefGoogle Scholar
  14. 5.14.
    F.W. De Wette, G.P. Alldredge, T.S. Chen, R.E. Allen, Phonons, in Proc. Int’l Conf. (Rennes), ed. by M.A. Nusimovici. (Flamarion, Rennes, 1971), p. 395Google Scholar
  15. 5.15.
    R.E. Allen, G.P. Alldredge, F.W. De Wette, Phys. Rev. Lett. 24, 301 (1970)ADSCrossRefGoogle Scholar
  16. 5.16.
    G. Benedek, Surface collective excitations, in Proc. NATO ASI on Collective Excitations in Solids, Erice, 1981, ed. by B.D. Bartols (Plenum, New York, 1982)Google Scholar
  17. 5.17.
    G. Brusdeylins, R.B. Doak, J.P. Toennies, Phys. Rev. Lett. 46, 437 (1981)ADSCrossRefGoogle Scholar
  18. 5.18.
    S. Lehwald, J.M. Szeftel, H. Ibach, T.S. Rahman, D.L. Mills, Phys. Rev. Lett. 50, 518 (1983)ADSCrossRefGoogle Scholar
  19. 5.19.
    R.E. Allen, G.P. Alldredge, F.W. De Wette, Phys. Rev. B 4, 1661 (1971)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hans Lüth
    • 1
    • 2
  1. 1.Forschungszentrum Jülich GmbHPeter Grünberg Institut (PGI) PGI-9: Semiconductor NanoelectronicsJülichGermany
  2. 2.Jülich Aachen Research Alliance (JARA)AachenGermany

Personalised recommendations