Advertisement

Space-Charge Layers at Semiconductor Interfaces

  • Hans Lüth
Chapter
  • 4.1k Downloads
Part of the Graduate Texts in Physics book series (GTP)

Abstract

The origin of space charge layers on semiconductor interfaces and their classification is discussed. For some simple space charge layers as Schottky depletion layers and quantized accumulation and inversion layers the formal description is presented. Particular space charge layers on important semiconductors and their surface potentials are discussed , also with respect to applications. In this context also Fermi level pinning is explained.

Keywords

Fermi Level Surface State Space Charge Landau Level Depletion Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

References

Chapter 7

  1. 7.1.
    H. Ibach, H. Lüth, Solid-State Physics, 4th edn. (Springer, Berlin, 2009) CrossRefzbMATHGoogle Scholar
  2. 7.2.
    A. Many, Y. Goldstein, N.B. Grover, Semiconductor Surfaces (North-Holland, Amsterdam, 1965) Google Scholar
  3. 7.3.
    H. Lüth, M. Büchel, R. Dorn, M. Liehr, R. Matz, Phys. Rev. B 15, 865 (1977) ADSCrossRefGoogle Scholar
  4. 7.4.
    E. Veuhoff, C.D. Kohl, J. Phys. C, Solid State Phys. 14, 2395 (1981) ADSCrossRefGoogle Scholar
  5. 7.5.
    T. Ando, A.B. Fowler, F. Stern, Electronic properties of two-dimensional systems, in Rev. Mod. Phys., vol. 54 (AIP, New York, 1982), p. 437 Google Scholar
  6. 7.6.
    F.J. Allen, G.W. Gobeli, Phys. Rev. 127, 152 (1962) ADSCrossRefGoogle Scholar
  7. 7.7.
    K.C. Pandey, Phys. Rev. Lett. 47, 1913 (1981) ADSCrossRefGoogle Scholar
  8. 7.8.
    M. Henzler, Phys. Status Solidi 19, 833 (1967) CrossRefGoogle Scholar
  9. 7.9.
    W. Mönch, Phys. Status Solidi 40, 257 (1970) CrossRefGoogle Scholar
  10. 7.10.
    J. von Wienskowski, W. Mönch, Phys. Status Solidi B 45, 583 (1971) ADSCrossRefGoogle Scholar
  11. 7.11.
    G.W. Gobeli, F.G. Allen, Surf. Sci. 2, 402 (1964) ADSCrossRefGoogle Scholar
  12. 7.12.
    F. Himpsel, D.E. Eastman, J. Vac. Sci. Technol. 16, 1287 (1979) ADSCrossRefGoogle Scholar
  13. 7.13.
    W. Mönch, P. Koke, S. Krüger, J. Vac. Sci. Technol. 19, 313 (1981) CrossRefGoogle Scholar
  14. 7.14.
    Priv. communication by H. Wagner (ISI, Research Center Jülich, 1988) Google Scholar
  15. 7.15.
    J.M. Nicholls, B. Reihl, Phys. Rev. B 36, 8071 (1987) ADSCrossRefGoogle Scholar
  16. 7.16.
    F.J. Himpsel, D.E. Eastman, P. Heimann, B. Reihl, C.W. White, D.M. Zehner, Phys. Rev. B 24, 1120 (1981) ADSCrossRefGoogle Scholar
  17. 7.17.
    P. Martensson, W. Ni, G. Hansson, J.M. Nicholls, B. Reihl, Phys. Rev. B 36, 5974 (1987) ADSCrossRefGoogle Scholar
  18. 7.18.
    P. Balk (ed.), The Si-SiO 2 System. Materials Science Monographs, vol. 32 (Elsevier, Amsterdam, 1988) Google Scholar
  19. 7.19.
    H. Ibach, H.D. Bruchmann, H. Wagner, Appl. Phys. A 29, 113 (1982) ADSCrossRefGoogle Scholar
  20. 7.20.
    M.H. White, J.R. Cricchi, Characterization of thin oxide MNOS memory transistors. IEEE Trans. Ed. 19, 1280 (1972) CrossRefGoogle Scholar
  21. 7.21.
    F.J. Grunthaner, P.J. Grunthaner, R.P. Vasquez, B.F. Lewis, J. Maserjian, A. Madhukar, J. Vac. Sci. Technol. 16, 1443 (1979) ADSCrossRefGoogle Scholar
  22. 7.22.
    F.J. Grunthaner, B.F. Lewis, J. Maserjian, J. Vac. Sci. Technol. 20, 747 (1982) ADSCrossRefGoogle Scholar
  23. 7.23.
    S.P. Svensson, J. Kanski, T.G. Andersson, P.-O. Nilsson, J. Vac. Sci. Technol. B 2, 235 (1984) CrossRefGoogle Scholar
  24. 7.24.
    A. Förster, H. Lüth, Surf. Sci. 189/190, 307 (1987) ADSCrossRefGoogle Scholar
  25. 7.25.
    K. Smit, L. Koenders, W. Mönch, J. Vac. Sci. Technol. B 7, 888 (1989) CrossRefGoogle Scholar
  26. 7.26.
    I. Mahboob, T.D. Veal, C.F. McConville, Phys. Rev. Lett. 92, 036804 (2004) ADSCrossRefGoogle Scholar
  27. 7.27.
    P.D.C. King, T.D. Veal, P.H. Jefferson, S.A. Hatfield, L.F.J. Piper, C.F. McConville, F. Fuchs, J. Furthmüller, F. Bechstedt, H. Lu, W.J. Schaff, Phys. Rev. B 77, 045316 (2008) ADSCrossRefGoogle Scholar
  28. 7.28.
    H. Moormann, D. Kohl, G. Heiland, Surf. Sci. 80, 261 (1979) ADSCrossRefGoogle Scholar
  29. 7.29.
    G. Heiland, H. Lüth, Adsorption on oxides, in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, vol. 3, ed. by D.A. King, D.P. Woodruff (Elsevier, Amsterdam, 1984), p. 137 Google Scholar
  30. 7.30.
    G. Heiland, P. Kunstmann, Surf. Sci. 13, 72 (1969) ADSCrossRefGoogle Scholar
  31. 7.31.
    D. Kahng, M.M. Atalla, Silicon–silicon dioxide field induced surface devices, in IRE Solid State Device Res. Conf. (Carnegie-Mellon University Press, Pittsburgh, 1960) Google Scholar
  32. 7.32.
    D. Kahng, A historical perspective on the development of MOS transistors and related devices. IEEE Trans. Ed. 23, 655 (1976) CrossRefGoogle Scholar
  33. 7.33.
    H.C. Pao, C.T. Sah, Effects of diffusion current on characteristics of metaloxide (insulator) semiconductor transistors (MOST). Solid-State Electron. 9, 927 (1966) ADSCrossRefGoogle Scholar
  34. 7.34.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981), p. 431 Google Scholar
  35. 7.35.
    A. Kamgar, P. Kneschaurek, G. Dorda, J.F. Koch, Phys. Rev. Lett. 32, 1251 (1974) ADSCrossRefGoogle Scholar
  36. 7.36.
    A.B. Fowler, F.F. Fang, W.E. Howard, P.J. Stiles, Phys. Rev. Lett. 16, 901 (1966) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hans Lüth
    • 1
    • 2
  1. 1.Forschungszentrum Jülich GmbHPeter Grünberg Institut (PGI) PGI-9: Semiconductor NanoelectronicsJülichGermany
  2. 2.Jülich Aachen Research Alliance (JARA)AachenGermany

Personalised recommendations