Advertisement

An Iterative Mesh Optimization Method for 3D Meristem Reconstruction at Cell Level

  • Guillaume CeruttiEmail author
  • Christophe Godin
Conference paper
  • 611 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 574)

Abstract

This paper focuses on the reconstruction of 3-dimensional multi-lay-ered triangular mesh representations of plant cell tissues, based on segmented images obtained from confocal microscopy of shoot apical meristems of model plant Arabidopsis thaliana. Obtaining good-quality meshes of cell interfaces in plant tissues is currently a missing step in the existing image analysis pipelines. We propose a method for optimizing the quality of such a mesh representation of the tissue simultaneously along several different citeria, starting from a low-quality mesh. An iterative process minimizes an energy functional defined over this discrete structure, by deforming its geometry and updating its connectivity at fixed complexity. This optimization results in a light discrete representation of the cell surfaces that enables fast visualization, and quantitative analysis, and gives way to in silico physical and mechanical simulations on real-world data. We also propose a complete quantitative evaluation scheme to measure the quality of the cell tissue reconstruction, that demonstrates the capacity of our method to fit multiple optimization criteria.

Keywords

Mesh optimization Shoot apical meristem Deformable models Confocal microscopy Cell reconstruction Morphogenesis 

References

  1. 1.
    Amat, F., Lemon, W., Mossing, D.P., McDole, K., Wan, Y., Branson, K., Myers, E.W., Keller, P.J.: Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat. Methods 11(9), 951–958 (2014)CrossRefGoogle Scholar
  2. 2.
    Amenta, N., Bern, M.W., Eppstein, D.: Optimal point placement for mesh smoothing. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 528–537 (1997)Google Scholar
  3. 3.
    Barbier de Reuille, P., Bohn-Courseau, I., Godin, C., Traas, J.: A protocol to analyse cellular dynamics during plant development. The Plant J. 44(6), 1045–1053 (2005)CrossRefGoogle Scholar
  4. 4.
    de Reuille, P.B., Robinson, S., Smith, R.S.: Quantifying cell shape and gene expression in the shoot apical meristem using MorphoGraphX. In: Žárský, V., Cvrčková, F. (eds.) Plant Cell Morphogenesis. Methods in Molecular Biology, pp. 121–134. Springer, New York (2014)CrossRefGoogle Scholar
  5. 5.
    Chakraborty, A., Perales, M.M., Reddy, G.V., Roy Chowdhury, A.K.: Adaptive geometric tessellation for 3d reconstruction of anisotropically developing cells in multilayer tissues from sparse volumetric microscopy images. PLoS One 8(8), e67202 (2013)CrossRefGoogle Scholar
  6. 6.
    Chakraborty, A., Yadav, R., Reddy, G.V., Roy Chowdhury, A.K.: Cell resolution 3d reconstruction of developing multilayer tissues from sparsely sampled volumetric microscopy images. In: BIBM, pp. 378–383 (2011)Google Scholar
  7. 7.
    Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Clark, B., Ray, N., Jiao, X.: Surface mesh optimization, adaption, and untangling with high-order accuracy. In: Proceedings of the 21st International Meshing Roundtable, IMR 2012, pp. 385–402 (2012)Google Scholar
  9. 9.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1999, pp. 317–324 (1999)Google Scholar
  10. 10.
    Dufour, A., Thibeaux, R., Labruyere, E., Guillen, N., Olivo-Marin, J.-C.: 3-D active meshes: Fast discrete deformable models for cell tracking in 3-D time-lapse microscopy. IEEE Trans. Image Process. 20(7), 1925–1937 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fernandez, R., Das, P., Mirabet, V., Moscardi, E., Traas, J., Verdeil, J.-L., Malandain, G., Godin, C.: Imaging plant growth in 4D : robust tissue reconstruction and lineaging at cell resolution. Nat. Methods 7, 547–553 (2010)CrossRefGoogle Scholar
  12. 12.
    Field, D.A.: Laplacian smoothing and delaunay triangulations. Commun. Appl. Numer. Methods 4(6), 709–712 (1988)zbMATHCrossRefGoogle Scholar
  13. 13.
    Field, D.A.: Qualitative measures for initial meshes. Int. J. Numer. Methods Eng. 47(4), 887–906 (2000)zbMATHCrossRefGoogle Scholar
  14. 14.
    Freitag, L.A.: On combining laplacian and optimization-based mesh smoothing techniques. In: Trends in Unstructured Mesh Generation, pp. 37–43 (1997)Google Scholar
  15. 15.
    Guignard, L., Godin, C., Fiuza, U.-M., Hufnagel, L., Lemaire, P., Malandain, G.: Spatio-temporal registration of embryo images. In: IEEE International Symposium on Biomedical Imaging (2014)Google Scholar
  16. 16.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1993, pp. 19–26 (1993)Google Scholar
  17. 17.
    Jiao, X., Wang, D., Zha, H.: Simple and effective variational optimization of surface and volume triangulations. Eng. Comput. (Lond.) 27(1), 81–94 (2011)zbMATHCrossRefGoogle Scholar
  18. 18.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)CrossRefGoogle Scholar
  19. 19.
    Keller, P.J.: Imaging morphogenesis: technological advances and biological insights. Science 340(6137) (2013)Google Scholar
  20. 20.
    Kwiatkowska, D.: Surface growth at the reproductive shoot apex of Arabidopsis thaliana pin-formed 1 and wild type. J. Exp. Bot. 55(399), 1021–1032 (2004)CrossRefGoogle Scholar
  21. 21.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1987, pp. 163–169 (1987)Google Scholar
  22. 22.
    Michelin, G., Guignard, L., Fiuza, U.-M., Malandain, G., et al.: Embryo cell membranes reconstruction by tensor voting. In: IEEE International Symposium on Biomedical Imaging (2014)Google Scholar
  23. 23.
    Owen, S.J.: A survey of unstructured mesh generation technology. In: International Meshing Roundtable, pp. 239–267 (1998)Google Scholar
  24. 24.
    Pradal, C., Boudon, F., Nouguier, C., Chopard, J., Godin, C.: Plantgl: A python-based geometric library for 3D plant modelling at different scales. Graph. Models 71(1), 1–21 (2009)CrossRefGoogle Scholar
  25. 25.
    Rizzi, B., Peyrieras, N.: Towards 3D in silico modeling of the sea urchin embryonic development. J. Chem. Biol. 7(1), 17–28 (2014)CrossRefGoogle Scholar
  26. 26.
    Robin, F.B., Dauga, D., Tassy, O., Sobral, D., Daian, F., Lemaire, P.: Time-lapse imaging of live Phallusia embryos for creating 3D digital replicas. Cold Spring Harb. Protoc. 10, 1244–1246 (2011)Google Scholar
  27. 27.
    Shewchuk, J.R.: Tetrahedral mesh generation by Delaunay refinement. In: Proceedings of the Symposium on Computational Geometry, SCG 1998, pp. 86–95 (1998)Google Scholar
  28. 28.
    Tataw, O.M., Reddy, G.V., Keogh, E.J., Roy Chowdhury, A.K.: Quantitative analysis of live-cell growth at the shoot apex of arabidopsis thaliana: algorithms for feature measurement and temporal alignment. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(5), 1150–1161 (2013)CrossRefGoogle Scholar
  29. 29.
    Taubin, G.: Curve and surface smoothing without shrinkage. In: Proceedings of the Fifth International Conference on Computer Vision (ICCV 1995), pp. 852–857 (1995)Google Scholar
  30. 30.
    Cgal. Cgal, Computational Geometry Algorithms Library (1996). http://www.cgal.org
  31. 31.
    Vidal, V., Wolf, C., Dupont, F.: Combinatorial mesh optimization. The Vis. Comput. 28(5), 511–525 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Virtual Plants INRIA TeamINRIAMontpellierFrance

Personalised recommendations