Crosstalk Network Biomarkers of a Pathogen-Host Interaction Difference Network from Innate to Adaptive Immunity

  • Chia-Chou Wu
  • Bor-Sen ChenEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 574)


Crosstalks between host and pathogen are crucial in the infection process. To obtain insight into the defense mechanisms of the host and the pathogenic mechanisms of the pathogen, pathogen-host interactions in the infection process have become a novel and promising research subject in the field of infectious disease. In this study, two pathogen-host dynamic crosstalk networks were constructed to investigate the transition of pathogenic and defensive mechanisms from the innate to adaptive immune system in the entire infection process based on two-sided time course microarray data of C. albicans-zebrafish infection model and database mining. Potential crosstalk network biomarkers for the transition from innate to adaptive immunity were identified based on proteins with larger interaction variations inside the host and pathogen, and at the interface between the host and pathogen. The crosstalk network biomarkers consist of proteins with larger interaction variation scores in the pathogen-host interaction difference network. From the crosstalk network biomarkers, the molecular mechanisms of innate and adaptive immunity were successfully investigated from a systems biology perspective. In view of these results, the proposed crosstalk network biomarkers may serve as potential therapeutic targets of infectious diseases.


Pathogen-host interaction Dynamic crosstalk network Crosstalk network biomarkers Interaction difference network Interaction variation score 


  1. 1.
    Ren, K., Dubner, R.: Interactions between the Immune and nervous systems in pain. Nat. Med. 16, 1267–1276 (2010)CrossRefGoogle Scholar
  2. 2.
    Capuron, L., Miller, A.H.: Immune system to brain signaling: Neuropsychopharmacological implications. Pharmacol. Ther. 130, 226–238 (2011)CrossRefGoogle Scholar
  3. 3.
    Ransohoff, R.M., Brown, M.A.: Innate immunity in the central nervous system. J. Clin. Invest. 122, 1164–1171 (2012)CrossRefGoogle Scholar
  4. 4.
    Nataf, S.: The sensory immune system: a neural twist to the antigenic discontinuity theory. Nat. Rev. Immunol. 4, 280 (2014)CrossRefGoogle Scholar
  5. 5.
    Sekirov, I., Russell, S.L., Antunes, L.C.M., Finlay, B.B.: Gut Microbiota in health and disease. Physiol. Rev. 90, 859–904 (2010)CrossRefGoogle Scholar
  6. 6.
    Esplugues, E., Huber, S., Gagliani, N., Hauser, A.E., Town, T., Wan, Y.S.Y., O’Connor, W., Rongvaux, A., Van Rooijen, N., Haberman, A.M., Iwakura, Y., Kuchroo, V.K., Kolls, J.K., Bluestone, J.A., Herold, K.C., Flavell, R.A.: Control of \({\rm T}_{{\rm H}}17\) cells occurs in the small intestine. Nature 475, 514–518 (2011)CrossRefGoogle Scholar
  7. 7.
    Lee, W.J., Hase, K.: Gut Microbiota-generated metabolites in animal health and disease. Nat. Chem. Biol. 10, 416–424 (2014)CrossRefGoogle Scholar
  8. 8.
    Sorokin, L.: The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 10, 712–723 (2010)CrossRefGoogle Scholar
  9. 9.
    Pulendran, B., Ahmed, R.: Immunological mechanisms of vaccination. Nat. Immunol. 12, 509–517 (2011)CrossRefGoogle Scholar
  10. 10.
    Romani, L.: Immunity to fungal infections. Nat. Rev. Immunol. 11, 275–288 (2011)CrossRefGoogle Scholar
  11. 11.
    Trede, N.S., Langenau, D.M., Traver, D., Look, A.T., Zon, L.I.: The use of zebrafish to understand immunity. Immunity 20, 367–379 (2004)CrossRefGoogle Scholar
  12. 12.
    Tierney, L., Kuchler, K., Rizzetto, L., Cavalieri, D.: Systems biology of host-fungus interactions: turning complexity into simplicity. Curr. Opin. Microbiol. 15, 440–446 (2012)CrossRefGoogle Scholar
  13. 13.
    Schmidt, F., Volker, U.: Proteome analysis of host-pathogen interactions: investigation of pathogen responses to the host cell environment. Proteomics 11, 3203–3211 (2011)CrossRefGoogle Scholar
  14. 14.
    Arnold, R., Boonen, K., Sun, M.G.F., Kim, P.M.: Computational analysis of interactomes: current and future perspectives for bioinformatics approaches to model the host-pathogen interaction space. Methods 57, 508–518 (2012)CrossRefGoogle Scholar
  15. 15.
    Meijer, A.H., Spaink, H.P.: Host-pathogen interactions made transparent with the zebrafish model. Curr. Drug Targets 12, 1000–1017 (2011)CrossRefGoogle Scholar
  16. 16.
    Chao, C.C., Hsu, P.C., Jen, C.F., Chen, I.H., Wang, C.H., Chan, H.C., Tsai, P.W., Tung, K.C., Wang, C.H., Lan, C.Y., Chuang, Y.J.: Zebrafish as a model host for Candida albicans infection. Infect. Immun. 78, 2512–2521 (2010)CrossRefGoogle Scholar
  17. 17.
    Gratacap, R.L., Wheeler, R.T.: Utilization of zebrafish for intravital study of eukaryotic pathogen-host interactions. Dev. Comp. Immunol. 46, 108–115 (2014)CrossRefGoogle Scholar
  18. 18.
    Schier, A.F.: Genomics: zebrafish earns its stripes. Nature 496, 443–444 (2013)CrossRefGoogle Scholar
  19. 19.
    Chen, Y.Y., Chao, C.C., Liu, F.C., Hsu, P.C., Chen, H.F., Peng, S.C., Chuang, Y.J., Lan, C.Y., Hsieh, W.P., Wong, D.S.H.: Dynamic transcript profiling of Candida albicans Infection in zebrafish: a pathogen-host interaction study. PLoS One 8, e72483 (2013)CrossRefGoogle Scholar
  20. 20.
    Lin, C., Lin, C.N., Wang, Y.C., Liu, F.Y., Chuang, Y.J., Lan, C.Y., Hsieh, W.P., Chen, B.S.: The role of TGF-\(\beta \) signaling and apoptosis in innate and adaptive immunity in zebrafish: a systems biology approach. BMC Syst. Biol. 8, 116 (2014)CrossRefGoogle Scholar
  21. 21.
    Ostlund, G., Schmitt, T., Forslund, K., Kostler, T., Messina, D.N., Roopra, S., Frings, O., Sonnhammer, E.L.L.: InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res. 38, D196–203 (2010)CrossRefGoogle Scholar
  22. 22.
    Croft, D., Mundo, A.F., Haw, R., Milacic, M., Weiser, J., Wu, G.M., Caudy, M., Garapati, P., Gillespie, M., Kamdar, M.R., Jassal, B., Jupe, S., Matthews, L., May, B., Palatnik, S., Rothfels, K., Shamovsky, V., Song, H., Williams, M., Birney, E., Hermjakob, H., Stein, L., D’Eustachio, P.: The Reactome pathway knowledgebase. Nucleic Acids Res. 42, D472–477 (2014)CrossRefGoogle Scholar
  23. 23.
    Yasui, N., Findlay, G.M., Gish, G.D., Hsiung, M.S., Huang, J., Tucholska, M., Taylor, L., Smith, L., Boldridge, W.C., Koide, A., Pawson, T., Koide, S.: Directed network wiring identifies a key protein interaction in embryonic stem cell differentiation. Mol. Cell. 54, 1034–1041 (2014)CrossRefGoogle Scholar
  24. 24.
    Gerold, G., Ajaj, K.A., Bienert, M., Laws, H.J., Zychlinsky, A., de Diego, J.L.: A toll-like receptor 2-integrin\(\beta _3\) complex senses bacterial lipopeptides via vitronectin. Nat. Immunol. 9, 761–768 (2008)CrossRefGoogle Scholar
  25. 25.
    Wight, T.N., Kang, I., Merrilees, M.J.: Versican and the control of inflammation. Matrix Biol. 35, 152–161 (2014)CrossRefGoogle Scholar
  26. 26.
    Wang, Y.C., Lin, C., Chuang, M.T., Hsieh, W.P., Lan, C.Y., Chuang, Y.J., Chen, B.S.: Interspecies protein-protein interaction network construction for characterization of host-pathogen interactions: a Candida albicans-zebrafish interaction study. BMC Syst. Biol. 7, 79 (2013)CrossRefGoogle Scholar
  27. 27.
    Curtis, A.M., Bellet, M.M., Sassone-Corsi, P., O’Neill, L.A.J.: Circadian clock proteins and immunity. Immunity 40, 178–186 (2014)CrossRefGoogle Scholar
  28. 28.
    Wang, Y.C., Chen, B.S.: A network-based biomarker approach for molecular investigation and diagnosis of lung cancer. BMC Med. Genomics 4, 2 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Control and Systems Biology Laboratory, Department of Electrical EngineeringNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations