Evaluating the Robustness of Correlation Network Analysis in the Aging Mouse Hypothalamus

  • Kathryn M. Cooper
  • Stephen Bonasera
  • Hesham AliEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 574)


Volumes of high-throughput assays been made publicly available. These massive repositories of biological data provide a wealth of information that can harnessed to investigate pressing questions regarding aging and disease. However, there is a distinct imbalance between available data generation techniques and data analysis methodology development. Similar to the four “V’s” of big data, biological data has volume, velocity, heterogeneity, and is prone to error, and as a result methods for analysis of this “biomedical big data” have developed at a slower rate. One promising solution to this multi-dimensional issue are network models, which have emerged as effective tools for analysis as they are capable of representing biological relationships en masse. Here we examine the need for development of standards and workflows in the usage of the correlation network model, where nodes and edges represent correlation between expression pattern in genes. One structure identified as biologically relevant in a correlation network, the gateway node, represents genes that change in co-expression between two different states. In this research, we manipulate parameters used to identify the gateway nodes within a given dataset to determine the consistency of results among network building and clustering approaches. This proof-of-concept is extremely important to investigate as there is a growing pool of methods used for various steps in our network analysis workflow, causing a lack of robustness, consistency, and reproducibility. This research compares the original gateway nodes analysis approach with manipulation in (1) network creation and (2) clustering analysis to test the consistency of structural results in the correlation network. To truly be able to trust these approaches, it must be addressed that even minor changes in approach can have sweeping effects on results. The results of this study allow the authors to call for stronger studies in benchmarking and reproducibility in biomedical “big” data analyses.


Gateway nodes Correlation networks Aging SPICi Robustness 


  1. 1.
    Benson, M., Breitling, R.: Network theory to understand microarray studies of complex diseases. Curr. Mol. Med. 6(6), 695–701 (2006)CrossRefGoogle Scholar
  2. 2.
    Reverter, A., Chan, E.K.: Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinformatics 24(21), 2491–2497 (2008). doi: 10.1093/bioinformatics/btn482 CrossRefGoogle Scholar
  3. 3.
    Horvath, S., Dong, J.: Geometric interpretation of gene coexpression network analysis. PLoS Comput. Biol. 4(8), e1000117 (2008). doi: 10.1371/journal.pcbi.1000117 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dempsey, K.M., Ali, H.H.: Identifying aging-related genes in mouse hippocampus using gateway nodes. BMC Syst. Biol. 8, 62 (2014). doi: 10.1186/1752-0509-8-62 CrossRefGoogle Scholar
  5. 5.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). doi:7898. [pii]Google Scholar
  6. 6.
    Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001). doi: 10.1038/35075138 CrossRefGoogle Scholar
  7. 7.
    Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101–113 (2004). doi: 10.1038/nrg1272 CrossRefGoogle Scholar
  8. 8.
    Albert, R.: Scale-free networks in cell biology. J. Cell Sci. 118(Pt 21), 4947–4957 (2005). doi:118/21/4947. [pii]Google Scholar
  9. 9.
    Bader, G.D., Hogue, C.W.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 4, 2 (2003)CrossRefGoogle Scholar
  10. 10.
    Michaut, M., Baryshnikova, A., Costanzo, M., et al.: Protein complexes are central in the yeast genetic landscape. PLoS Comput. Biol. 7(2), e1001092 (2011). doi: 10.1371/journal.pcbi.1001092 CrossRefGoogle Scholar
  11. 11.
    Dempsey, K., Thapa, I., Bastola, D., Ali, H.: Functional identification in correlation networks using gene ontology edge annotation. Int. J. Comput. Biol. Drug Des. 5(3–4), 222–244 (2012). doi: 10.1504/IJCBDD.2012.049206 CrossRefGoogle Scholar
  12. 12.
    Dempsey, K., Ali, H.: On the robustness of the biological correlation network model. In: International Conference on Bioinformatics Models, Methods and Algorithms (BIOINFORMATICS 2014), pp. 186–195 (2014)Google Scholar
  13. 13.
    Dempsey, K., Ali, H.: On the discovery of cellular subsystems in gene correlation networks using measures of centrality. Curr. Bioinform. 8(3), 305–314 (2013)CrossRefGoogle Scholar
  14. 14.
    Dempsey, K., Bhowmick, S., Ali, H.: Function-preserving filters for sampling in biological networks. Procedia Comput. Sci. 9, 587–595 (2012). doi: 10.1016/j.procs.2012.04.063 CrossRefGoogle Scholar
  15. 15.
    Dempsey, K., Duraisamy, K., Bhowmick, S., Ali, H.: The development of parallel adaptive sampling algorithms for analyzing biological networks. In: 2013 IEEE International Symposium on Parallel and Distributed Processing, Workshops and PhD Forum, pp. 725–734. doi: 10.1109/IPDPSW.2012.90 (2012)
  16. 16.
    Dempsey, K., Thapa, I., Cortes, C., Eriksen, Z., Bastola, D.K., Ali, H.: On mining biological signals using correlation networks. In: 2013 IEEE 13th International Conference on Data Mining Workshops, pp. 327–334. doi: 10.1109/ICDMW.201 (2013)
  17. 17.
    Khazanchi, R., Dempsey, K., Thapa, I., Ali, H.: On identifying and analyzing significant nodes in protein-protein interaction networks. In: 2013 IEEE 13th International Conference on Data Mining Workshops, pp. 343–348. doi: 10.1109/ICD (2013)
  18. 18.
    Barrett, T., Wilhite, S.E., Ledoux, P., et al.: NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 41(Database issue), D991–D9915 (2013). doi: 10.1093/nar/gks1193 CrossRefGoogle Scholar
  19. 19.
    Backes, C., Keller, A., Kuentzer, J., et al.: GeneTrail–advanced gene set enrichment analysis. Nucleic Acids Res. 35(Web Server issue), W186–W192 (2007). doi: 10.1093/nar/gks1193 CrossRefGoogle Scholar
  20. 20.
    Jiang, P., Singh, M.: SPICi: a fast clustering algorithm for large biological networks. Bioinformatics 26(8), 1105–1111 (2010). doi: 10.1093/bioinformatics/btq078 CrossRefGoogle Scholar
  21. 21.
    Ashburner, M., Ball, C.A., Blake, J.A., et al.: Gene ontology: tool for the unification of biology. the gene ontology consortium. Nat. Genet. 25(1), 25–29 (2000). doi: 10.1038/75556 CrossRefGoogle Scholar
  22. 22.
    Aoki, K.F., Kanehisa, M.: Using the KEGG database resource. Curr. Protoc. Bioinform. Chapter 1: Unit 1.12.  10.1002/0471250953.bi0112s11 (2005)
  23. 23.
    Kriete, A., Mayo, K.L.: Atypical pathways of NF-kappaB activation and aging. Exp. Gerontol. 44(4), 250–255 (2009). doi: 10.1016/j.exger.2008.12.005 CrossRefGoogle Scholar
  24. 24.
    Deane, R., Du Yan, S., Submamaryan, R.K., et al.: RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. 9(7), 907–913 (2003). doi: 10.1038/nm890 CrossRefGoogle Scholar
  25. 25.
    Leclerc, E., Sturchler, E., Vetter, S.W., Heizmann, C.W.: Crosstalk between calcium, amyloid beta and the receptor for advanced glycation endproducts in alzheimer’s disease. Rev. Neurosci. 20(2), 95–110 (2009)Google Scholar
  26. 26.
    Arancio, O., Zhang, H.P., Chen, X., et al.: RAGE potentiates abeta-induced perturbation of neuronal function in transgenic mice. EMBO J. 23(20), 4096–4105 (2004). doi: 10.1038/sj.emboj.7600415 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kathryn M. Cooper
    • 1
  • Stephen Bonasera
    • 2
  • Hesham Ali
    • 1
    Email author
  1. 1.College of Information Science and TechnologyUniversity of Nebraska OmahaOmahaUSA
  2. 2.Division of Geriatrics, Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations