Advertisement

Validation Study of a Wave Equation Model of Soft Tissue for a New Virtual Reality Laparoscopy Training System

  • Sneha Patel
  • Jackrit SuthakornEmail author
Conference paper
  • 614 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 574)

Abstract

Despite the benefits of laparoscopic procedures for the patients, this technique comes with a number of environmental limitations for the surgeon, which therefore require distinctive psychomotor skills. VR training systems aim to improve these skills. For effective transference of skills from these training systems, it is important to mimic the surgical environment; including the soft tissue models. This study introduces a novel two dimensional wave equation model to mimic the interactions between soft tissue and laparoscopic tools. This model accounts for mechanical and material properties of the soft tissue. This study also proposes a new face validation technique, for an objective analysis of the developed model as a viable soft tissue model. The statistical analyses and computational cost support the use of wave equation as a replacement for present models. In the future, this model will be applied to a novel VR surgical training system for an enhanced training experience.

Keywords

Soft tissue model Surgical training Two dimensional wave equation Finite element analysis (FEA) Computer based models Virtual reality (VR) training 

Notes

Acknowledgements

The authors would like to thank Thailand National Research University Grant through Mahidol University for their financial support. Secondly, the authors would like to thank Prof. Chumpon Wilasrusmee, M.D., R.N., Ramathibodi Hospital, Mahidol University, for his invaluable input towards the development of a virtual reality surgical training system and insights into the needs of surgeons. Lastly, we would like to thank BART LAB’s Miss Nantida Nillahoot for her design of the telesurgical/training system in Fig. 9. The first author would also like to take this opportunity to thank Aditya Birla Group’s Pratibha Scholarship, and Biomedical Engineering Scholarship (BMES) from the Department of Biomedical Engineering, Mahidol University, for financial aid towards her graduate education. The first author would, finally, like to thank her colleagues at BART LAB for their continuous support and assistance.

References

  1. 1.
    Basdogan, C., Ho, C.-H., Srinivasan, M.A.: Virtual environments for medical training: graphical and haptic simulation of laparoscopic common bile duct exploration. IEEE/ASME Trans. Mechatron. 6(3), 269–285 (2001)CrossRefGoogle Scholar
  2. 2.
    Nguyen, N.T., Goldman, C., Rosenquist, C.J., Arango, A., Cole, C.J., Lee, S.J., Wolfe, B.M.: Laparoscopic versus open gastric bypass: a randomized study of outcomes, quality of life, and costs. Ann. Surg. 234(3), 279–291 (2001)CrossRefGoogle Scholar
  3. 3.
    Bashankaev, B., Baido, S., Wexner, S.D.: Review of available methods of simulation training to facilitate surgical education. Surg. Endosc. 25(1), 28–35 (2011). doi: 10.1007/s00464-010-1123-x CrossRefGoogle Scholar
  4. 4.
    Roberts, K.E., Bell, R.L., Duffy, A.J.: Evolution of surgical skills training. World J. Gastroenterol.: WJG 12(20), 3219–3224 (2006)Google Scholar
  5. 5.
    Gallagher, A.G., McClure, N., McGuigan, J., Ritchie, K., Sheehy, N.P.: An ergonomic analysis of the fulcrum effect in the acquisition of endoscopic skills. Endoscopy 30(7), 617–620 (1998)CrossRefGoogle Scholar
  6. 6.
    See, W.A., Cooper, C.S., Fisher, R.J.: Predictors of laparoscopic complications after formal training in laparoscopic surgery. JAMA 270(2), 2689–2692 (1993)CrossRefGoogle Scholar
  7. 7.
    Wherry, D.C., Rob, C.G., Marohn, M.R., Rich, N.M.: An external audit of laparoscopic cholecystectomy performed in medical treatment facilities of the department of Defense. Ann. Surg. 220(5), 626–634 (1998)CrossRefGoogle Scholar
  8. 8.
    Munz, Y., Kumar, B.D., Moorthy, K., Bann, S., Darzi, A.: Laparoscopic virtual reality and box trainers: is one superior to the other? Surg. Endosc. 18(3), 485–494 (2004). doi: 10.1007/s00464-003-9043-7 CrossRefGoogle Scholar
  9. 9.
    Madan, A.K., Frantzides, C.T., Park, W.C., Tebbit, C.L., Kumari, N.V., O’Leary, P.J.: Predicting baseline laparoscopic surgery skills. Surg. Endosc. 19, 101–104 (2005)CrossRefGoogle Scholar
  10. 10.
    Kneebone, R.: Simulation in surgical training: educational issues and practical implications. Med. Educ. 37(3), 267–277 (2003)CrossRefGoogle Scholar
  11. 11.
    Rosen, K.: The History of Simulation. In: Levine, A., DeMaria, S., Schwartz, A., Sim, A. (eds.) The Comprehensive Textbook of Healthcare Simulation. LNCS, pp. 5–49. Springer, New York (2013)CrossRefGoogle Scholar
  12. 12.
    DiMaio, S.P., Salcudean, S.E.: Needle insertion modeling and simulation. IEEE Trans. Robot. Autom. 19(5), 864–875 (2003). doi: 10.1109/TRA.2003.817044
  13. 13.
    Auer, L.M., Radetzky, A., Wimmer, C., Kleinszig, G., Schroecker, F., Auer, D.P., Delingette, H., Davies, B., Pretschner, D.P.: Visualization for planning and simulation of minimally invasive neurosurgical procedures. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 1199–1209. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Sutherland, L.M., Middleton, P.F., Anthony, A., Hamdorf, J., Cregan, P., Scott, D., Maddern, G.J.: Surgical simulation: a systematic review. Ann. Surg. 243(3), 291–300 (2006). doi: 10.1097/01.sla.0000200839.93965.26 CrossRefGoogle Scholar
  15. 15.
    Ali, M.R., Mowery, Y., Kaplan, B., DeMaria, E.J.: Training the novice in laparoscopy. More challenge is better. Surg. Endosc. 16(12), 1732–1736 (2002). doi: 10.1007/s00464-002-8850-6 CrossRefGoogle Scholar
  16. 16.
    Carter, F.J., Schijven, M.P., Aggarwal, R., Grantcharov, T., Francis, N.K., Hanna, G.B., Jakimowicz, J.J.: Work Group for, E., Implementation of, S., Skills Training, P.: Consensus guidelines for validation of virtual reality surgical simulators. Surg. Endosc. 19(12), 1523–1532 (2005). doi: 10.1007/s00464-005-0384-2 CrossRefGoogle Scholar
  17. 17.
    Seymour, N.E.: VR to OR: a review of the evidence that virtual reality simulation improves operating room performance. World J. Surg. 32, 7 (2008). doi: 10.1007/s00268-007-9307-9 CrossRefGoogle Scholar
  18. 18.
    Niroomandi, S., Alfaro, I., Cueto, E., Chinesta, F.: Accounting for large deformations in real-time simulations of soft tissues based on reduced-order models. Comput. Methods Programs Biomed. 105(1), 1–12 (2012). doi: 10.1016/j.cmpb.2010.06.012 CrossRefGoogle Scholar
  19. 19.
    Basdogan, C., De, S., Kim, J., Muniyandi, M., Kim, H., Srinivasan, M.A.: Haptics in minimally invasive surgical simulation and training. IEEE Comput. Graphics Appl. 24(2), 56–64 (2004)CrossRefGoogle Scholar
  20. 20.
    Brown, J., Sorkin, S., Latombe, J.C., Montgomery, K., Stephanides, M.: Algorithmic tools for real-time microsurgery simulation. Med. Image Anal. 6(3), 289–300 (2002)CrossRefGoogle Scholar
  21. 21.
    Itsarachaiyot, Y.: Haptic Interaction of Laparoscopic Surgery in Virtual Environment. Mahidol University (2012)Google Scholar
  22. 22.
    Itsarachaiyot, Y., Pochanakorn, R., Nillahoot, N., Suthakorn, J.: Force acquisition on surgical instruments for virtual reality surgical training system. In: 2011 International Conference on Computer Control and Automation (ICCCA 2011), pp. 173–176. IEEE, Jeju Island, South Korea, 1-3 May 2011Google Scholar
  23. 23.
    Kreyszig, E., Kreyszig, H., Norminton, E.J.: Partial differential equations (PDEs). In: Corliss, S. (ed.) Advanced Engineering Mathematics, pp. 540–585. John Wiley & Sons Inc., New York (2011)Google Scholar
  24. 24.
    Beards, C.: The vibration of continuous structures. In: Structural Vibration: Analysis and Damping. vol. 4, pp. 129–156. Butterworth-Heinemann, Burlington, MA, (1996)Google Scholar
  25. 25.
    Sánchez-Sesma, F.J., Palencia, V.J., Luzón, F.: Estimation of local site effects during earthquakes: an overview. ISET J. Earthq. Technol. 39(3), 167–193 (2002)Google Scholar
  26. 26.
    Silver, F.H., Freeman, J.W., DeVore, D.: Viscoelastic properties of human skin and processed dermis. Skin Res. Technol. Off. J. Int. Soc. Bioeng. Skin 7(1), 18–23 (2001)CrossRefGoogle Scholar
  27. 27.
    MacLaughlin, J., Holick, M.F.: Aging decreases the capacity of human skin to produce vitamin D3. J. Clin. Investig. 76(4), 1536–1538 (1985). doi: 10.1172/JCI112134 CrossRefGoogle Scholar
  28. 28.
    Hendriks, F.M.: Mechanical behaviour of human skin in vivo: a literature review. Koninklijke Philips Electronics N.V., Nat. Lab. Unclassified report, pp. 1–46 (2001)Google Scholar
  29. 29.
    Silver, F.H., Seehra, G.P., Freeman, J.W., DeVore, D.: Viscoelastic properties of young and old human dermis: a proposed molecular mechanism for elastic energy storage in collagen and elastin. J. Appl. Polym. Sci. 86(8), 1978–1985 (2002). doi: 10.1002/app.11119 CrossRefGoogle Scholar
  30. 30.
    McDougall, E.M.: Validation of surgical simulators. J. Endourol./Endourological Soc. 21(3), 244–247 (2007). doi: 10.1089/end.2007.9985 CrossRefGoogle Scholar
  31. 31.
    Kenney, P.A., Wszolek, M.F., Gould, J.J., Libertino, J.A., Moinzadeh, A.: Face, Content, and Construct Validity of dV-Trainer, a Novel Virtual Reality Simulator for Robotic Surgery. Urology 73(6), 1288–1292 (2009). doi: 10.1016/j.urology.2008.12.044 CrossRefGoogle Scholar
  32. 32.
    Gavazzi, A., Bahsoun, A.N., Van Haute, W., Ahmed, K., Elhage, O., Jaye, P., Khan, M.S., Dasgupta, P.: Face, content and construct validity of a virtual reality simulator for robotic surgery (SEP Robot). Ann. R. Coll. Surg. Engl. 93(2), 152–156 (2011). doi: 10.1308/003588411X12851639108358 CrossRefGoogle Scholar
  33. 33.
    Gibney, M.A., Arce, C.H., Byron, K.J., Hirsch, L.J.: Skin and subcutaneous adipose layer thickness in adults with diabetes at sites used for insulin injections: implications for needle length recommendations. Curr. Med. Res. Opin. 26(6), 1519–1530 (2010). doi: 10.1185/03007995.2010.481203 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Center for Biomedical and Robotics Technology (BART LAB), Department of Biomedical Engineering, Faculty of EngineeringMahidol UniversitySalayaThailand

Personalised recommendations